Comparative analysis of through‐transmission ultrasonic bulk wave methods for phase velocity measurements in anisotropic materials

1994 ◽  
Vol 95 (6) ◽  
pp. 3204-3212 ◽  
Author(s):  
Y. C. Chu ◽  
S. I. Rokhlin
2017 ◽  
Vol 38 (4) ◽  
pp. 577-585
Author(s):  
Radosław Musoski ◽  
Jacek Stelmach

Abstract Results of velocity measurements of liquid and gas bubbles in a tank with a self-aspirating disk impeller are analysed. Studies were carried out using a fluorescent dye tracer in the measuring system with two cameras (simultaneous phase velocity measurement) and with one camera (sequential measurement of phase velocity). Based on a comparative analysis of the acquired data it was found that when differences in the phase velocities were small the simultaneous velocity measurement gave good results. However, sequential measurement gives greater possibilities for setting the measuring system and if the analysis of instantaneous velocities is not necessary, it seems to be a better solution.


2000 ◽  
Vol 78 (9) ◽  
pp. 803-821 ◽  
Author(s):  
B O'Neill ◽  
R Gr. Maev

Although the fundamental equations for the propagation of elastic and acoustic waves in anisotropic materials have not changed in more than a 100 years, the last few decades have seen a surge in interest in the topic. Much of this interest stems from the growing need for characterization of an increasing number of exotic materials. The intent of this paper is to review, for the benefit of beginning researchers in acoustics and ultrasonics, the fundamental phenomena related to elastic wave propagation in anisotropic media. We also present the most common and interesting theoretical methods developed over the past 20 years to model bulk wave propagation in such media. The methods discussed include plane wave superpositions, ray asymptotic theory, paraxial beams, and Green's functions. More peripheral issues, including anisotropic effects combined with various other exotic effects, are dealt with in the bibliography. PACS No.: 43.90


2018 ◽  
Vol 123 (2) ◽  
pp. 1770-1792 ◽  
Author(s):  
Emanuel D. Kästle ◽  
A. El-Sharkawy ◽  
L. Boschi ◽  
T. Meier ◽  
C. Rosenberg ◽  
...  

2019 ◽  
Vol 131 ◽  
pp. 01041
Author(s):  
Tong Wu ◽  
Kezhu Song ◽  
Zhengyang Sun ◽  
Hongwei Zhao ◽  
Xin Hu

ESPAC method is a rapidly emerging field of seismological research, which can reflect the physical properties of the Earth’s medium. In the process of using the ESPAC method, sometimes the noise of the original data is relatively large, and the raw data of each seismometer needs to be preprocessed, including operations such as de-averaging, de-trending, re-sampling, normalization, and filtering. The selection of the normalized method and the selection of the bandwidth of the filter are particularly important, and it will produce the wrong result if not handled properly. This article attempts to use the extended spatial autocorrelation (ESPAC) method to extract Rayleigh-wave phase velocity dispersion curves from the vertical component of the seismic stations’ microtremors, and proposes feasible and effective solutions to the selection of the normalized method and bandwidth of bandpass filtering.


Sign in / Sign up

Export Citation Format

Share Document