scholarly journals An application of a parametric transducer to measure the acoustical properties of a living green wall

2016 ◽  
Vol 140 (4) ◽  
pp. 3431-3431
Author(s):  
Anna Romanova ◽  
Kirill V. Horoshenkov
2019 ◽  
Vol 145 ◽  
pp. 89-97 ◽  
Author(s):  
Anna Romanova ◽  
Kirill V. Horoshenkov ◽  
Alistair Hurrell

Author(s):  
Michael Joshua Landau

Acoustical properties of speech have been shown to be related to mental states such as remission and depression. The objective of this project was to relate the energy in frequency bands with the severity of the mental state using the Beck Depression Inventory (BDI). Recorded speech was obtained from male and female subjects with mental states of remission, depression, and suicidal risk. These subjects had recorded automated and spontaneous speech samples. Multiple regression analysis was used to relate the independent energy band ratio variables with the dependent BDI scores, and thus allow the determination of equitable BDI scores for future patients. For the male group, the square of the 3rd energy band and the cross-product of the 2nd and 3rd energy band were prominent in both the reading and interviewed groups. Therefore the equation with the 2nd lowest Akaike Information Criterion (AIC) score was chosen for the reading male group, and the 1st lowest AIC score was chosen for the interviewed male group. For the female group, the square and cross-product of the 1st and 2nd energy bands were prominent in both the reading and interviewed groups. Therefore the 2nd lowest AIC score was chosen for the reading female group, and the 1st lowest AIC score was chosen for the interviewed female group. The clinician could thus determine the patient’s mood or state of mind by comparing the estimated BDI score with the ranges of total BDI scores: remitted 0 – 20, depressed 15 – 38, suicidal 38 – 46. Keywords: speech, mental states, power spectra, multiple regression, information theoretic criterion


Author(s):  
V.A. Bulanov ◽  
I.V. Korskov ◽  
A.V. Storozhenko ◽  
S.N. Sosedko

Описано применение акустического зондирования для исследования акустических характеристик верхнего слоя моря с использованием широкополосных остронаправленных инвертированных излучателей,устанавливаемых на дно. В основу метода положен принцип регистрации обратного рассеяния и отраженияот поверхности моря акустических импульсов с различной частотой, позволяющий одновременно измерятьрассеяние и поглощение звука и нелинейный акустический параметр морской воды. Многочастотное зондирование позволяет реализовать акустическую спектроскопию пузырьков в приповерхностных слоях моря,проводить оценку газосодержания и получать данные о спектре поверхностного волнения при различных состояниях моря вплоть до штормовых. Применение остронаправленных высокочастотных пучков ультразвукапозволяет разделить информацию о планктоне и пузырьках и определить с высоким пространственным разрешением структуру пузырьковых облаков, образующихся при обрушении ветровых волн, и структуру планктонных сообществ. Участие планктона в волновом движении в толще морской воды позволяет определитьпараметры внутренних волн спектр и распределение по амплитудам в различное время.This paper represents the application of acoustic probingfor the investigation of acoustical properties of the upperlayer of the sea using broadband narrow-beam invertedtransducers that are mounted on the sea bottom. Thismethod is based on the principle of the recording of thebackscattering and reflections of acoustic pulses of differentfrequencies from the sea surface. That simultaneouslyallows measuring scattering and absorption of the soundand non-linear acoustic parameter of seawater. Multifrequencyprobing allows performing acoustic spectroscopy ofbubbles in the near-surface layer of the sea, estimating gascontent, and obtaining data on the spectrum of the surfacewaves in various states of the sea up to a storm. Utilizationof the high-frequency narrow ultrasound beams allows us toseparate the information about plankton and bubbles and todetermine the structure of bubble clouds, created during thebreaking of wind waves, along with the structure of planktoncommunities with high spatial resolution. The participationof plankton in the wave motion in the seawater columnallows determining parameters of internal waves, such asspectrum and distribution of amplitudes at different times.


2021 ◽  
Vol 11 (2) ◽  
pp. 475
Author(s):  
Petr Zatloukal ◽  
Pavlína Suchomelová ◽  
Jakub Dömény ◽  
Tadeáš Doskočil ◽  
Ginevra Manzo ◽  
...  

This article presents the possibilities of decreasing moisture sorption properties via thermal modification of Norway spruce wood in musical instruments. The 202 resonance wood specimens that were used to produce piano soundboards have been conditioned and divided into three density groups. The first specimen group had natural untreated properties, the second was thermally treated at 180 °C, and the third group was treated at 200 °C. All specimens were isothermally conditioned at 20 °C with relative humidity values of 40, 60, and 80%. The equilibrium moisture content (EMC), swelling, and acoustical properties, such as the longitudinal dynamic modulus (E’L), bending dynamic modulus (Eb), damping coefficient (tan δ), acoustic conversion efficiency (ACEL), and relative acoustic conversion efficiency (RACEL) were evaluated on every moisture content level. Treatment at 180 °C caused the EMC to decrease by 36% and the volume swelling to decrease by 9.9%. Treatment at 200 °C decreased the EMC by 42% and the swelling by 39.6%. The 180 °C treatment decreased the value of the longitudinal sound velocity by 1.6%, whereas the treatment at 200 °C increased the velocity by 2.1%. The acoustical properties EL′, Eb, ACEL, and RACEL were lower due to the higher moisture content of the samples, and only the tanδ increased. Although both treatments significantly affected the swelling and EMC, the treatment at 180 °C did not significantly affect the acoustical properties.


2019 ◽  
Vol 22 (6) ◽  
pp. 594-606 ◽  
Author(s):  
Naomi J. Paull ◽  
Daniel Krix ◽  
Peter J. Irga ◽  
Fraser R. Torpy

Sign in / Sign up

Export Citation Format

Share Document