scholarly journals The effect of pore size and density on ultrasonic attenuation in porous structures with mono-disperse random pore distribution: A two-dimensional in-silico study

2018 ◽  
Vol 144 (2) ◽  
pp. 709-719 ◽  
Author(s):  
Omid Yousefian ◽  
R. D. White ◽  
Yasamin Karbalaeisadegh ◽  
H. T. Banks ◽  
Marie Muller
Author(s):  
Dwintha Lestari ◽  
Elin Yulinah Sukandar ◽  
Irda Fidrianny

  Objective: The objectives of this research were to investigate in silico interaction between apigenin and apigetrin with 3-hydroxy-3-methyl-glutayl-coenzyme A (HMG Co-A) reductase, to find the most favorable binding site as well as to predict the binding mode.Materials and Methods: Docking calculation was performed by branded Sony Vaio PC Linux Ubuntu 14.04 LTS. The binding process based on the best docking result with HMG Co-A reductase was presented in two-dimensional diagram. Statin, atorvastatin, and R-mevalonate were used as standard.Results: Binding affinity and inhibition constant of R-mevalonate were Ei=−4.2 kcal/mol, Ki=836.78 μM; apigenin Ei=−7.0 kcal/mol, Ki=7.43 μM; apigetrin Ei=−5.9 kcal/mol, Ki=47.53 μM; simvastatin Ei=−8.2 kcal/mol; Ki=0.98 μM; atorvastatin Ei=−8.4 kcal/mol; Ki=0.7 μM. Apigenin had better binding interaction than apigetrin.Conclusion: Apigenin could be developed as anticholesterol.


2013 ◽  
Vol 13 (10) ◽  
pp. 1407-1414 ◽  
Author(s):  
L. Fabian ◽  
V. Sulsen ◽  
F. Frank ◽  
S. Cazorla ◽  
E. Malchiodi ◽  
...  

2020 ◽  
Vol 17 (1) ◽  
pp. 40-50
Author(s):  
Farzane Kargar ◽  
Amir Savardashtaki ◽  
Mojtaba Mortazavi ◽  
Masoud Torkzadeh Mahani ◽  
Ali Mohammad Amani ◽  
...  

Background: The 1,4-alpha-glucan branching protein (GlgB) plays an important role in the glycogen biosynthesis and the deficiency in this enzyme has resulted in Glycogen storage disease and accumulation of an amylopectin-like polysaccharide. Consequently, this enzyme was considered a special topic in clinical and biotechnological research. One of the newly introduced GlgB belongs to the Neisseria sp. HMSC071A01 (Ref.Seq. WP_049335546). For in silico analysis, the 3D molecular modeling of this enzyme was conducted in the I-TASSER web server. Methods: For a better evaluation, the important characteristics of this enzyme such as functional properties, metabolic pathway and activity were investigated in the TargetP software. Additionally, the phylogenetic tree and secondary structure of this enzyme were studied by Mafft and Prabi software, respectively. Finally, the binding site properties (the maltoheptaose as substrate) were studied using the AutoDock Vina. Results: By drawing the phylogenetic tree, the closest species were the taxonomic group of Betaproteobacteria. The results showed that the structure of this enzyme had 34.45% of the alpha helix and 45.45% of the random coil. Our analysis predicted that this enzyme has a potential signal peptide in the protein sequence. Conclusion: By these analyses, a new understanding was developed related to the sequence and structure of this enzyme. Our findings can further be used in some fields of clinical and industrial biotechnology.


2016 ◽  
Vol 11 (3) ◽  
pp. 346-356
Author(s):  
Nada Ayadi ◽  
Sarra Aloui ◽  
Rabeb Shaiek ◽  
Oussama Rokbani ◽  
Faten Raboud ◽  
...  

Author(s):  
Trinath Chowdhury ◽  
Gourisankar Roymahapatra ◽  
Santi M. Mandal

Background: COVID-19 is a life threatening novel corona viral infection to our civilization and spreading rapidly. Terrific efforts are generous by the researchers to search for a drug to control SARS-CoV-2. Methods: Here, a series of arsenical derivatives were optimized and analyzed with in silico study to search the inhibitor of RNA dependent RNA polymerase (RdRp), the major replication factor of SARS-CoV-2. All the optimized derivatives were blindly docked with RdRp of SARS-CoV-2 using iGEMDOCK v2.1. Results: Based on the lower idock score in the catalytic pocket of RdRp, darinaparsin (-82.52 kcal/mol) revealed most effective among them. Darinaparsin strongly binds with both Nsp9 replicase protein (-8.77 kcal/mol) and Nsp15 endoribonuclease (-8.3 kcal/mol) of SARS-CoV-2 as confirmed from the AutoDock analysis. During infection, the ssRNA of SARS-CoV2 is translated into large polyproteins forming viral replication complex by specific proteases like 3CL protease and papain protease. This is also another target to control the virus infection where darinaparsin also perform the inhibitory role to proteases of 3CL protease (-7.69 kcal/mol) and papain protease (-8.43 kcal/mol). Conclusion: In host cell, the furin protease serves as a gateway to the viral entry and darinaparsin docked with furin protease which revealed a strong binding affinity. Thus, screening of potential arsenic drugs would help in providing the fast invitro to in-vivo analysis towards development of therapeutics against SARS-CoV-2.


Sign in / Sign up

Export Citation Format

Share Document