Auditory and auditory-visual frequency-band importance functions for consonant recognition

2020 ◽  
Vol 147 (5) ◽  
pp. 3712-3727
Author(s):  
Joshua G. W. Bernstein ◽  
Jonathan H. Venezia ◽  
Ken W. Grant
1991 ◽  
Vol 34 (2) ◽  
pp. 415-426 ◽  
Author(s):  
Richard L. Freyman ◽  
G. Patrick Nerbonne ◽  
Heather A. Cote

This investigation examined the degree to which modification of the consonant-vowel (C-V) intensity ratio affected consonant recognition under conditions in which listeners were forced to rely more heavily on waveform envelope cues than on spectral cues. The stimuli were 22 vowel-consonant-vowel utterances, which had been mixed at six different signal-to-noise ratios with white noise that had been modulated by the speech waveform envelope. The resulting waveforms preserved the gross speech envelope shape, but spectral cues were limited by the white-noise masking. In a second stimulus set, the consonant portion of each utterance was amplified by 10 dB. Sixteen subjects with normal hearing listened to the unmodified stimuli, and 16 listened to the amplified-consonant stimuli. Recognition performance was reduced in the amplified-consonant condition for some consonants, presumably because waveform envelope cues had been distorted. However, for other consonants, especially the voiced stops, consonant amplification improved recognition. Patterns of errors were altered for several consonant groups, including some that showed only small changes in recognition scores. The results indicate that when spectral cues are compromised, nonlinear amplification can alter waveform envelope cues for consonant recognition.


2020 ◽  
Vol E103.C (11) ◽  
pp. 588-596
Author(s):  
Masamune NOMURA ◽  
Yuki NAKAMURA ◽  
Hiroo TARAO ◽  
Amane TAKEI

2014 ◽  
Vol 73 (11) ◽  
pp. 993-1003 ◽  
Author(s):  
R. V. Golovashchenko ◽  
V. N. Derkach ◽  
M. K. Zaetz ◽  
V. G. Korzh ◽  
A. S. Plevako ◽  
...  
Keyword(s):  

2008 ◽  
Vol 67 (13) ◽  
pp. 1207-1215 ◽  
Author(s):  
V. K. Kiselyov ◽  
M. S. Yanovsky ◽  
V. I. Bezborodov ◽  
Ye. M. Kuleshov

Author(s):  
Sebastian Brand ◽  
Michael Kögel ◽  
Frank Altmann ◽  
Ingrid DeWolf ◽  
Ahmad Khaled ◽  
...  

Abstract Through Silicon Via (TSV) is the most promising technology for vertical interconnection in novel three-dimensional chip architectures. Reliability and quality assessment necessary for process development and manufacturing require appropriate non-destructive testing techniques to detect cracks and delamination defects with sufficient penetration and imaging capabilities. The current paper presents the application of two acoustically based methods operating in the GHz-frequency band for the assessment of the integrity of TSV structures.


Sign in / Sign up

Export Citation Format

Share Document