Within-Day Energy Deficiency and Metabolic Perturbation in Male Endurance Athletes

Author(s):  
Monica Klungland Torstveit ◽  
Ida Fahrenholtz ◽  
Thomas B. Stenqvist ◽  
Øystein Sylta ◽  
Anna Melin

Endurance athletes are at increased risk of relative energy deficiency associated with metabolic perturbation and impaired health. We aimed to estimate and compare within-day energy balance in male athletes with suppressed and normal resting metabolic rate (RMR) and explore whether within-day energy deficiency is associated with endocrine markers of energy deficiency. A total of 31 male cyclists, triathletes, and long-distance runners recruited from regional competitive sports clubs were included. The protocol comprised measurements of RMR by ventilated hood and energy intake and energy expenditure to predict RMRratio (measured RMR/predicted RMR), energy availability, 24-hr energy balance and within-day energy balance in 1-hr intervals, assessment of body composition by dual-energy X-ray absorptiometry, and blood plasma analysis. Subjects were categorized as having suppressed (RMRratio < 0.90, n = 20) or normal (RMRratio > 0.90, n = 11) RMR. Despite there being no observed differences in 24-hr energy balance or energy availability between the groups, subjects with suppressed RMR spent more time in an energy deficit exceeding 400 kcal (20.9 [18.8–21.8] hr vs. 10.8 [2.5–16.4], p = .023) and had larger single-hour energy deficits compared with subjects with normal RMR (3,265 ± 1,963 kcal vs. −1,340 ± 2,439, p = .023). Larger single-hour energy deficits were associated with higher cortisol levels (r = −.499, p = .004) and a lower testosterone:cortisol ratio (r = .431, p = .015), but no associations with triiodothyronine or fasting blood glucose were observed. In conclusion, within-day energy deficiency was associated with suppressed RMR and catabolic markers in male endurance athletes.

2019 ◽  
Vol 5 (1) ◽  
pp. e000439 ◽  
Author(s):  
Monica Klungland Torstveit ◽  
Ida Lysdahl Fahrenholtz ◽  
Mia Beck Lichtenstein ◽  
Thomas Birkedal Stenqvist ◽  
Anna Katarina Melin

ObjectivesTo explore associations betweenexercise dependence, eating disorder (ED) symptoms and biomarkers of Relative Energy Deficiency in Sports (RED-S) among male endurance athletes.MethodsFifty-three healthy well-trained male cyclists, triathletes and long-distance runners recruited from regional competitive sports clubs were included in this cross-sectional study. The protocol comprised the Exercise Dependence Scale (EXDS), the ED Examination Questionnaire (EDE-Q), measurements of body composition, resting metabolic rate, energy intake and expenditure and blood analysis of hormones and glucose.ResultsParticipants with higher EXDS score displayed a more negative energy balance compared with subjects with lower EXDS score (p<0.01). EXDS total score was positively correlated with EDE-Q global score (r=0.41, p<0.05) and the subscale score forrestraint eating(r=0.34, p<0.05) andweight concern(r=0.35, p<0.05). EXDS total score and the subscaleslack of controlandtolerancewere positively correlated with cortisol (r=0.38, p<0.01, r=0.39, p<0.01 and r=0.29, p<0.05, respectively). The EXDS subscaleswithdrawalandtolerancewere negatively correlated with fasting blood glucose (r=−0.31 and r=−0.32, p<0.05, respectively), whileintention effectwas negatively correlated with testosterone:cortisol ratio (r=−0.29, p<0.05) and positively correlated with cortisol:insulin ratio (r=0.33, p<0.05).ConclusionIn this sample of healthy male athletes, we found associations between higher EXDS scores, ED symptoms and biomarkers of RED-S, such as a more pronounced negative energy balance and higher cortisol levels.


2018 ◽  
Vol 53 (10) ◽  
pp. 628-633 ◽  
Author(s):  
Kathryn E Ackerman ◽  
Bryan Holtzman ◽  
Katherine M Cooper ◽  
Erin F Flynn ◽  
Georgie Bruinvels ◽  
...  

Low energy availability (EA) is suspected to be the underlying cause of both the Female Athlete Triad and the more recently defined syndrome, Relative Energy Deficiency in Sport (RED-S). The International Olympic Committee (IOC) defined RED-S as a syndrome of health and performance impairments resulting from an energy deficit. While the importance of adequate EA is generally accepted, few studies have attempted to understand whether low EA is associated with the health and performance consequences posited by the IOC.ObjectiveThe purpose of this cross-sectional study was to examine the association of low EA with RED-S health and performance consequences in a large clinical population of female athletes.MethodsOne thousand female athletes (15–30 years) completed an online questionnaire and were classified as having low or adequate EA. The associations between low EA and the health and performance factors listed in the RED-S models were evaluated using chi-squared test and the odds ratios were evaluated using binomial logistic regression (p<0.05).ResultsAthletes with low EA were more likely to be classified as having increased risk of menstrual dysfunction, poor bone health, metabolic issues, haematological detriments, psychological disorders, cardiovascular impairment and gastrointestinal dysfunction than those with adequate EA. Performance variables associated with low EA included decreased training response, impaired judgement, decreased coordination, decreased concentration, irritability, depression and decreased endurance performance.ConclusionThese findings demonstrate that low EA measured using self-report questionnaires is strongly associated with many health and performance consequences proposed by the RED-S models.


Author(s):  
Amy R Lane ◽  
Anthony C Hackney ◽  
Abbie E Smith-Ryan ◽  
Kristen Kucera ◽  
Johna K Register-Mikalik ◽  
...  

Energy Availability and RED-S Risk Factors in Competitive, Non-elite Male Endurance Athletes Amy R Lane1, Anthony C Hackney()1, Abbie E Smith-Ryan1, Kristen Kucera1, Johna K Register-Mihalik1 and Kristin Ondrak1  1Department of Exercise & Sport Science, University of North Carolina, Chapel Hill, NC 27599, USA © The Authors   Abstract Relative Energy Deficiency in Sport (RED-S) is predicated on the assumption that low energy availability (EA) induces deficiencies-dysfunction in multiple physiologic systems. However, research on RED-S and EA in male athletes is limited in comparison to women. The aim of this study is to investigate EA and the risk factors for RED-S, and their potential associations in non-elite male endurance athletes. Laboratory assessments for resting metabolic rate (RMR), bone mineral density (BMD), blood hormonal biomarkers and maximal aerobic capacity were conducted on 60 competitive, recreationally trained male endurance athletes (age=43.4±11.6 years [mean±SD], training=10.9±2.7 h/wk, 7.1±8.8 years). Participants provided 7-days of training logs and 4-days of diet records. Diet and training records were used to calculate EA. Correlations were used to examine associations between EA and RMR, BMD, stress fractures and reproductive, metabolic and bone biomarkers. Mean EA was 28.7±13.4 kcal/kg fat free mass (FFM), which categorized our sample as low EA (based upon published criterion, < 30 kcal/kg FFM) and at a high risk for RED-S. Hormonal and bone biomarkers were in normal clinical ranges, even though EA was low. The only interesting significant association was EA being negatively associated with total body BMD (r=–0.360, P=0.005), opposite of expectations. On average our subjects displayed a state of low EA based upon the criterion which has been primarily developed from female-based research. Nonetheless, our participants displayed no major hormonal or bone health disturbances found in athletes diagnosed with RED-S. A value of < 30 kcal/kg FFM to diagnose low EA may not be appropriate for non-elite endurance trained men. 


Author(s):  
Alexandra Ruivo Coelho ◽  
Gonçalo Cardoso ◽  
Marta Espanhol Brito ◽  
Inês Neves Gomes ◽  
Maria João Cascais

AbstractIn a healthy athlete, the caloric intake is sufficient for sports energy needs and body physiological functions, allowing a balance between energy availability, bone metabolism, and menstrual cycle. On the other hand, an imbalance caused by low energy availability due to a restrictive diet, eating disorders or long periods of energy expenditure leads to multisystemic deregulation favoring the essential functions of the body. This phenomenon, described as the female athlete triad, occurs in a considerable percentage of high-performance athletes, with harmful consequences for their future. The present review was carried out based on a critical analysis of the most recent publications available and aims to provide a global perception of the topic relative energy deficit in sport (RED-S). The objective is to promote the acquisition of more consolidated knowledge on an undervalued theme, enabling the acquisition of preventive strategies, early diagnosis and/or appropriate treatment.


Medicina ◽  
2019 ◽  
Vol 55 (10) ◽  
pp. 665 ◽  
Author(s):  
Lane ◽  
Hackney ◽  
Smith-Ryan ◽  
Kucera ◽  
Registar-Mihalik ◽  
...  

Background and Objectives: Relative energy deficiency in sport (RED-S) has been introduced as a broad-spectrum syndrome leading to possible dysfunction in numerous physiological systems, driven primarily by low energy availability (EA). Research in females has identified specific EA cut-points indicative of risk level for developing physiological and performance disturbances. Cut-points in males have yet to be evaluated. This study examined the prevalence of low EA in competitive (non-elite), recreationally trained (CRT) male endurance athletes. Materials and Methods: Subjects were 108 CRT (38.6 ± 13.8 y; 12.2 ± 5.4 h/wk training) male endurance athletes (runners, cyclists, triathletes) who completed a descriptive survey online via Qualtrics® and returned 3 day diet and exercise training records. EA was calculated from returned surveys and training records. Resting metabolic rate (RMR) and lean body mass (LBM) were estimated from self-reported survey data. Prevalence of risk group was categorized based on the female cut-points: at risk (AR) ≤30 kcal/kg LBM, moderate risk (MR) = 30–45 kcal/kg LBM, or no risk (NR) ≥45 kcal/kg LBM. Results: In this sample, 47.2% (n = 51) were classified as AR, 33.3% (n = 36) as MR, and 19.4% (n = 21) as NR for low EA. Cyclists had lower EA (26.9 ± 17.4 kcal/kg LBM, n = 45) than runners (34.6 ± 13.3 kcal/kg LBM, n = 55, p = 0.016) and all other sport categories (39.5 ± 19.1 kcal/kg LBM, n = 8, p = 0.037). Conclusions: The findings indicate this sample had a high prevalence of risk for low EA, at 47.2%. Only 19.4% of participants were at no risk, meaning ~80% of participants were at some degree of risk of experiencing low EA. Cyclists were at greater risk in this cohort of low EA, although why this occurred was unclear and is in need of further investigation. Future research should address whether the current female cut-points for low EA are appropriate for use in male populations.


2018 ◽  
Vol 28 (5) ◽  
pp. 490-496 ◽  
Author(s):  
Jennifer Sygo ◽  
Alexandra M. Coates ◽  
Erik Sesbreno ◽  
Margo L. Mountjoy ◽  
Jamie F. Burr

Low energy availability (LEA), and subsequent relative energy deficiency in sport, has been observed in endurance, aesthetic, and team sport athletes, with limited data on prevalence in athletes in short-burst activities such as sprinting. We examined prevalence of signs and symptoms of LEA in elite female sprinters at the start of the training season (PRE), and at the end of a 5-month indoor training period (POST). Four of 13 female sprinters (31%) presented at PRE testing with at least one primary (amenorrhea, low bone mineral density, low follicle-stimulating hormone, luteinizing hormone, or estradiol, resting metabolic rate ≤29 kcal/kg fat-free mass, Low Energy Availability in Females Questionnaire score ≥8) and one secondary indicator of LEA (fasting blood glucose <4 mmol/L, free triiodothyronine <3.5 pmol/L, ferritin <25 μg/L, low-density lipoprotein cholesterol >3.0 mmol/L, fasting insulin <20 pmol/L, low insulin-like growth factor-1, systolic blood pressure <90 mmHg, and/or diastolic blood pressure <60 mmHg). At POST, seven out of 13 athletes (54%) presented with at least one primary and one secondary indicator of LEA, three of whom had also presented with indicators of LEA at PRE. Five out of 13 (39%) athletes had previous stress fracture history, though this was not associated with current indicators of LEA (PRE: r = .52, p = .07; POST: r = −.07, p = .82). In conclusion, elite female sprinters may present with signs and symptoms of LEA, even after off-season rest. Medical and coaching staff should be aware of the signs and symptoms of LEA and relative energy deficiency in sport and should include appropriate screening and intervention strategies when working with sprinters.


Nutrients ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1995 ◽  
Author(s):  
Pantelis Nikolaidis ◽  
Eleftherios Veniamakis ◽  
Thomas Rosemann ◽  
Beat Knechtle

Athletes competing in ultra-endurance sports should manage nutritional issues, especially with regards to energy and fluid balance. An ultra-endurance race, considered a duration of at least 6 h, might induce the energy balance (i.e., energy deficit) in levels that could reach up to ~7000 kcal per day. Such a negative energy balance is a major health and performance concern as it leads to a decrease of both fat and skeletal muscle mass in events such as 24-h swimming, 6-day cycling or 17-day running. Sport anemia caused by heavy exercise and gastrointestinal discomfort, under hot or cold environmental conditions also needs to be considered as a major factor for health and performance in ultra-endurance sports. In addition, fluid losses from sweat can reach up to 2 L/h due to increased metabolic work during prolonged exercise and exercise under hot environments that might result in hypohydration. Athletes are at an increased risk for exercise-associated hyponatremia (EAH) and limb swelling when intake of fluids is greater than the volume lost. Optimal pre-race nutritional strategies should aim to increase fat utilization during exercise, and the consumption of fat-rich foods may be considered during the race, as well as carbohydrates, electrolytes, and fluid. Moreover, to reduce the risk of EAH, fluid intake should include sodium in the amounts of 10–25 mmol to reduce the risk of EAH and should be limited to 300–600 mL per hour of the race.


Author(s):  
Louise M. Burke ◽  
Bronwen Lundy ◽  
Ida L. Fahrenholtz ◽  
Anna K. Melin

The human body requires energy for numerous functions including, growth, thermogenesis, reproduction, cellular maintenance, and movement. In sports nutrition, energy availability (EA) is defined as the energy available to support these basic physiological functions and good health once the energy cost of exercise is deducted from energy intake (EI), relative to an athlete’s fat-free mass (FFM). Low EA provides a unifying theory to link numerous disorders seen in both female and male athletes, described by the syndrome Relative Energy Deficiency in Sport, and related to restricted energy intake, excessive exercise or a combination of both. These outcomes are incurred in different dose–response patterns relative to the reduction in EA below a “healthy” level of ∼45 kcal·kg FFM−1·day−1. Although EA estimates are being used to guide and monitor athletic practices, as well as support a diagnosis of Relative Energy Deficiency in Sport, problems associated with the measurement and interpretation of EA in the field should be explored. These include the lack of a universal protocol for the calculation of EA, the resources needed to achieve estimates of each of the components of the equation, and the residual errors in these estimates. The lack of a clear definition of the value for EA that is considered “low” reflects problems around its measurement, as well as differences between individuals and individual components of “normal”/“healthy” function. Finally, further investigation of nutrition and exercise behavior including within- and between-day energy spread and dietary characteristics is warranted since it may directly contribute to low EA or its secondary problems.


2021 ◽  
Vol 55 (16) ◽  
pp. 940.2-941
Author(s):  
J Wilkinson ◽  
L Mayhew

The prevalence of injury in adolescent elite track and field competitors is high,1 however only one study has been conducted with UK athletes.2 Relative Energy Deficiency in Sport (RED-S), encapsulating the Female Athlete Triad, is a syndrome whereby decreased energy availability affects health and performance, potentially leading to an increased injury risk; particularly to bone (3). Calculating decreased energy availability is difficult, however identifying contributing factors, such as disordered eating and menstrual dysfunction, is more viable.3AimThis study was conducted to identify the prevalence of musculoskeletal injury, disordered eating and menstrual dysfunction in elite junior UK track and field athletes.MethodData was collected from track and field athletes ranked within the top 10 of the UK U17 rankings in 2017 or 2018, with 138 athletes participating. Participants completed a self-reported musculoskeletal injury, disordered eating and menstrual dysfunction questionnaire relating to a 12-month time period.ResultsThis study found a 12-month retrospective injury prevalence of 43.5%. 13% of participants presented with disordered eating, whilst 37.7% of female participants presented with menstrual dysfunction. There was a statistically significant difference in injury prevalence according to gender, with more male athletes sustaining an injury compared with female athletes. No differences in injury prevalence were noted according to event group, menstrual dysfunction or disordered eating. The anatomical location displaying the highest prevalence of injury was the ankle and foot (22.5%). The anatomical structure displaying the highest 12-month injury prevalence was muscle (43.6%), followed by bone (30.9%). Additionally, 21.7% of respondents reported having previously sustained a stress fracture prior to taking part in this study.ConclusionThere is a high prevalence of injuries in junior UK track and field athletes, with most injuries affecting the lower limb. Although there was no difference noted in injury risk for athletes with menstrual dysfunction or disordered eating, the prevalence of bone injuries was alarmingly high. This study indicates the requirement for future research investigating RED-S within this population.ReferenceZemper, E. Track andField Injuries. In: Caine DJ, Maffulli N. (eds). Epidemiology of Pediatric Sports Injuries. Individual Sports. Med Sport Science: Volume 48. Basel, Karger; 2005. p. 138–151D’Souza D. Track and field athletics injuries - a one-year survey. British Journal of Sports Medicine 1994; 28 (3): 197–202.Mountjoy M, Sundgot-Borgen J, Burke L, et al. The IOC consensus statement: beyond the Female Athlete Triad—Relative Energy Deficiency in Sport (RED-S). British Journal of Sports Medicine 2014; 48: 491–497.


Sign in / Sign up

Export Citation Format

Share Document