No Improvement in Endurance Performance after a Single Dose of Beetroot Juice

2012 ◽  
Vol 22 (6) ◽  
pp. 470-478 ◽  
Author(s):  
Naomi M. Cermak ◽  
Peter Res ◽  
Rudi Stinkens ◽  
Jon O. Lundberg ◽  
Martin J. Gibala ◽  
...  

Introduction:Dietary nitrate supplementation has received much attention in the literature due to its proposed ergogenic properties. Recently, the ingestion of a single bolus of nitrate-rich beetroot juice (500 ml, ~6.2 mmol NO3−) was reported to improve subsequent time-trial performance. However, this large volume of ingested beetroot juice does not represent a realistic dietary strategy for athletes to follow in a practical, performancebased setting. Therefore, we investigated the impact of ingesting a single bolus of concentrated nitrate-rich beetroot juice (140 ml, ~8.7 mmol NO3−) on subsequent 1-hr time-trial performance in well-trained cyclists.Methods:Using a double-blind, repeated-measures crossover design (1-wk washout period), 20 trained male cyclists (26 ± 1 yr, VO2peak 60 ± 1 ml · kg−1 · min−1, Wmax 398 ± 7.7 W) ingested 140 ml of concentrated beetroot juice (8.7 mmol NO3−; BEET) or a placebo (nitrate-depleted beetroot juice; PLAC) with breakfast 2.5 hr before an ~1-hr cycling time trial (1,073 ± 21 kJ). Resting blood samples were collected every 30 min after BEET or PLAC ingestion and immediately after the time trial.Results:Plasma nitrite concentration was higher in BEET than PLAC before the onset of the time trial (532 ± 32 vs. 271 ± 13 nM, respectively; p < .001), but subsequent time-trial performance (65.5 ± 1.1 vs. 65 ± 1.1 s), power output (275 ± 7 vs. 278 ± 7 W), and heart rate (170 ± 2 vs. 170 ± 2 beats/min) did not differ between BEET and PLAC treatments (all p > .05).Conclusion:Ingestion of a single bolus of concentrated (140 ml) beetroot juice (8.7 mmol NO3−) does not improve subsequent 1-hr time-trial performance in well-trained cyclists.

Author(s):  
Naomi M. Cermak ◽  
Martin J. Gibala ◽  
Luc J.C. van Loon

Six days of dietary nitrate supplementation in the form of beetroot juice (~0.5 L/d) has been reported to reduce pulmonary oxygen uptake (VO2) during submaximal exercise and increase tolerance of high-intensity work rates, suggesting that nitrate can be a potent ergogenic aid. Limited data are available regarding the effect of nitrate ingestion on athletic performance, and no study has investigated the potential ergogenic effects of a small-volume, concentrated dose of beetroot juice. The authors tested the hypothesis that 6 d of nitrate ingestion would improve time-trial performance in trained cyclists. Using a double-blind, repeated-measures crossover design, 12 male cyclists (31 ± 3 yr, VO2peak = 58 ± 2 ml · kg−1 · min−1, maximal power [Wmax] = 342 ± 10 W) ingested 140 ml/d of concentrated beetroot (~8 mmol/d nitrate) juice (BEET) or a placebo (nitrate-depleted beetroot juice; PLAC) for 6 d, separated by a 14-d washout. After supplementation on Day 6, subjects performed 60 min of submaximal cycling (2 × 30 min at 45% and 65% Wmax, respectively), followed by a 10-km time trial. Time-trial performance (953 ± 18 vs. 965 ± 18 s, p < .005) and power output (294 ± 12 vs. 288 ± 12 W, p < .05) improved after BEET compared with PLAC supplementation. Submaximal VO2 was lower after BEET (45% Wmax = 1.92 ± 0.06 vs. 2.02 ± 0.09 L/min, 65% Wmax 2.94 ± 0.12 vs. 3.11 ± 0.12 L/min) than with PLAC (main effect, p < .05). Wholebody fuel selection and plasma lactate, glucose, and insulin concentrations did not differ between treatments. Six days of nitrate supplementation reduced VO2 during submaximal exercise and improved time-trial performance in trained cyclists.


2019 ◽  
Vol 14 (6) ◽  
pp. 822-828 ◽  
Author(s):  
John Molphy ◽  
John W. Dickinson ◽  
Neil J. Chester ◽  
Mike Loosemore ◽  
Gregory Whyte

Terbutaline is a prohibited drug except for athletes with a therapeutic use exemption certificate; terbutaline’s effects on endurance performance are relatively unknown. Purpose: To investigate the effects of 2 therapeutic (2 and 4 mg) inhaled doses of terbutaline on 3-km running time-trial performance. Methods: A total of 8 men (age 24.3 [2.4] y; weight 77.6 [8] kg; and height 179.5 [4.3] cm) and 8 women (age 22.4 [3] y; weight 58.6 [6] kg; and height 163 [9.2] cm) free from respiratory disease and illness provided written informed consent. Participants completed 3-km running time trials on a nonmotorized treadmill on 3 separate occasions following placebo and 2- and 4-mg inhaled terbutaline in a single-blind, repeated-measures design. Urine samples (15 min postexercise) were analyzed for terbutaline concentration. Data were analyzed using 1-way repeated-measures analysis of variance, and significance was set at P < .05 for all analyses. Results: No differences were observed for completion times (1103 [201] s, 1106 [195] s, 1098 [165] s; P = .913) for the placebo or 2- and 4-mg inhaled trials, respectively. Lactate values were higher (P = .02) after 4 mg terbutaline (10.7 [2.3] mmol·L−1) vs placebo (8.9 [1.8] mmol·L−1). Values of forced expiratory volume in the first second of expiration (FEV1) were greater after inhalation of 2 mg (5.08 [0.2]; P = .01) and 4 mg terbutaline (5.07 [0.2]; P = .02) compared with placebo (4.83 [0.5] L) postinhalation. Urinary terbutaline concentrations were mean 306 (288) ng·mL−1 and 435 (410) ng·mL−1 (P = .2) and peak 956 ng·mL−1 and 1244 ng·mL−1 after 2 and 4 mg inhaled terbutaline, respectively. No differences were observed between the male and female participants. Conclusions: Therapeutic dosing of terbutaline does not lead to an improvement in 3-km running performance despite significantly increased FEV1. The findings suggest that athletes using inhaled terbutaline at high therapeutic doses to treat asthma will not gain an ergogenic advantage during 3-km running performance.


Author(s):  
Adam U. Upshaw ◽  
Tiffany S. Wong ◽  
Arash Bandegan ◽  
Peter W.R. Lemon

Postexercise chocolate milk ingestion has been shown to enhance both glycogen resynthesis and subsequent exercise performance. To assess whether nondairy chocolate beverage ingestion post–glycogen-lowering exercise can enhance 20-km cycling time trial performance 4 hr later, eight healthy trained male cyclists (21.8 ± 2.3y, VO2max = 61.2 ± 1.4 ml·kg-1·min-1; M ± SD) completed a series of intense cycling intervals designed to lower muscle glycogen (Jentjens & Jeukendrup, 2003) followed by 4 hr of recovery and a subsequent 20-km cycling time trial. During the first 2 hr of recovery, participants ingested chocolate dairy milk (DAIRYCHOC), chocolate soy beverage (SOYCHOC), chocolate hemp beverage (HEMPCHOC), low-fat dairy milk (MILK), or a low-energy artificially sweetened, flavored beverage (PLACEBO) at 30-min intervals in a double-blind, counterbalanced repeated-measures design. All drinks, except the PLACEBO (247 kJ) were isoenergetic (2,107 kJ), and all chocolate-flavored drinks provided 1-g CHO·kg body mass-1·h-1. Fluid intake across treatments was equalized (2,262 ± 148 ml) by ingesting appropriate quantities of water based on drink intake. The CHO:PRO ratio was 4:1, 1.5:1, 4:1, and 6:1 for DAIRYCHOC, MILK, SOYCHOC, and HEMPCHOC, respectively. One-way analysis of variance with repeated measures showed time trial performance (DAIRYCHOC = 34.58 ± 2.5 min, SOYCHOC = 34.83 ± 2.2 min, HEMPCHOC = 34.88 ± 1.1 min, MILK = 34.47 ± 1.7 min) was enhanced similarly vs PLACEBO (37.85 ± 2.1) for all treatments (p = .019) These data suggest that postexercise macronutrient and total energy intake are more important for same-day 20-km cycling time trial performance after glycogen-lowering exercise than protein type or protein-to-carbohydrate ratio.


Author(s):  
John L. Ivy ◽  
Lynne Kammer ◽  
Zhenping Ding ◽  
Bei Wang ◽  
Jeffrey R. Bernard ◽  
...  

Context:Not all athletic competitions lend themselves to supplementation during the actual event, underscoring the importance of preexercise supplementation to extend endurance and improve exercise performance. Energy drinks are composed of ingredients that have been found to increase endurance and improve physical performance.Purpose:The purpose of the study was to investigate the effects of a commercially available energy drink, ingested before exercise, on endurance performance.Methods:The study was a double-blind, randomized, crossover design. After a 12-hr fast, 6 male and 6 female trained cyclists (mean age 27.3 ± 1.7 yr, mass 68.9 ± 3.2 kg, and VO2 54.9 ± 2.3 ml · kg–1 · min–1) consumed 500 ml of either flavored placebo or Red Bull Energy Drink (ED; 2.0 g taurine, 1.2 g glucuronolactone, 160 mg caffeine, 54 g carbohydrate, 40 mg niacin, 10 mg pantothenic acid, 10 mg vitamin B6, and 10 μg vitamin B12) 40 min before a simulated cycling time trial. Performance was measured as time to complete a standardized amount of work equal to 1 hr of cycling at 70% Wmax.Results:Performance improved with ED compared with placebo (3,690 ± 64 s vs. 3,874 ± 93 s, p < .01), but there was no difference in rating of perceived exertion between treatments. β-Endorphin levels increased during exercise, with the increase for ED approaching significance over placebo (p = .10). Substrate utilization, as measured by open-circuit spirometry, did not differ between treatments.Conclusion:These results demonstrate that consuming a commercially available ED before exercise can improve endurance performance and that this improvement might be in part the result of increased effort without a concomitant increase in perceived exertion.


2014 ◽  
Vol 117 (10) ◽  
pp. 1180-1187 ◽  
Author(s):  
Anders Kalsen ◽  
Morten Hostrup ◽  
Sebastian Karlsson ◽  
Peter Hemmersbach ◽  
Jens Bangsbo ◽  
...  

In a randomized, double-blind crossover design, we investigated the effect of the beta2-agonist terbutaline (TER) on endurance performance and substrate utilization in nine moderately trained men [maximum oxygen uptake (V̇o2 max) 58.9 ± 3.1 ml·min−1·kg−1]. Subjects performed 60 min of submaximal exercise (65–70% of V̇o2 max) immediately followed by a 300-kcal time trial with inhalation of either 15 mg of TER or placebo (PLA). Pulmonary gas exchange was measured during the submaximal exercise, and muscle biopsies were collected before and after the exercise bouts. Time trial performance was not different between TER and PLA (1,072 ± 145 vs. 1,054 ± 125 s). During the submaximal exercise, respiratory exchange ratio, glycogen breakdown (TER 266 ± 32, PLA 195 ± 28 mmol/kg dw), and muscle lactate accumulation (TER 20.3 ± 1.6, PLA 13.2 ± 1.2 mmol/kg dw) were higher ( P < 0.05) with TER than PLA. There was no difference between TER and PLA in net muscle glycogen utilization or lactate accumulation during the time trial. Intramyocellular triacylglycerol content did not change with treatment or exercise. Pyruvate dehydrogenase-E1α phosphorylation at Ser293 and Ser300 was lower ( P < 0.05) before submaximal exercise with TER than PLA, with no difference after the submaximal exercise and the time trial. Before submaximal exercise, acetyl-CoA carboxylase 2 (ACC2) phosphorylation at Ser221 was higher ( P < 0.05) with TER than PLA. There was no difference in phosphorylation of alpha 5′-AMP-activated protein kinase (αAMPK) at Thr172 between treatments. The present study suggests that beta2-agonists do not enhance 300-kcal time trial performance, but they increase carbohydrate metabolism in skeletal muscles during submaximal exercise independent of AMPK and ACC phosphorylation, and that this effect diminishes as drug exposure time, exercise duration, and intensity are increased.


2004 ◽  
Vol 14 (5) ◽  
pp. 560-573
Author(s):  
Lee R. Glazier ◽  
Trent Stellingwerff ◽  
Lawrence L. Spriet

This study investigated whether the supplement Microhydrin® (MH) contains silica hydride bonds (Si-H) and if Microhydrin supplementation increased performance or altered metabolism compared to placebo (PL) during prolonged endurance cycling. Seven endurance-trained male cyclists consumed 9.6 g of MH or PL over 48 h in a randomized, double-blind, crossover design. Subjects cycled at ~ 70% of their VO2peak, coupled with five 2-min bursts at 85% VO2peak to simulate hill climbs over 2 h. Subjects then completed a time trial, which required them to complete 7 kJ/kg body mass as quickly as possible. Infrared spectrometry analysis showed a complete absence of Si-H bonds in MH. There was no difference in time trial performance between the 2 trials (PL: 2257 ± 120 s vs. MH: 2345 ± 152 s). Measured oxygen uptake, respiratory exchange ratio, carbohydrate (MH: 2.99 ± 0.13 g/min; PL: 2.83 ± 0.17 g/min avg. over 2 h) and fat (MH: 0.341 ± 0.06 g/min; PL: 0.361 ± 0.07 g/min) oxidation rates and all blood parameters (lactate, glucose, and free fatty acids) were all unaffected by MH supplementation. The volume of expired CO2 and ventilation were significantly greater with MH supplementation (P ≤ 0.05). The results indicate that oral Microhydrin supplementation does not enhance cycling time trial performance or alter metabolism during prolonged submaximal exercise in endurance-trained cyclists.


Author(s):  
Jorn Trommelen ◽  
Milou Beelen ◽  
Marjan Mullers ◽  
Martin J. Gibala ◽  
Luc J.C. van Loon ◽  
...  

Carbohydrate mouth rinsing during exercise has been suggested to enhance performance of short (45–60 min) bouts of high-intensity (>75% VO2peak) exercise. Recent studies indicate that this performance enhancing effect may be dependent on the prandial state of the athlete. The purpose of this study was to define the impact of a carbohydrate mouth rinse on ~1-hr time trial performance in both the fasted and fed states. Using a double-blind, crossover design, 14 trained male cyclists (27 ± 6 years; 5.0 ± 0.5 W·kg−1) were selected to perform 4 time trials of ~1 hr (1,032 ± 127 kJ) on a cycle ergometer while rinsing their mouths with a 6.4% sucrose solution (SUC) or a noncaloric sweetened placebo (PLA) for 5 s at the start and at every 12.5% of their set amount of work completed. Two trials were performed in an overnight fasted state and two trials were performed 2 h after consuming a standardized breakfast. Performance time did not differ between any of the trials (fasted-PLA: 68.6 ± 7.2; fasted-SUC: 69.6 ± 7.5; fed-PLA: 67.6 ± 6.6; and fed-SUC: 69.0 ± 6.3 min; Prandial State × Mouth Rinse Solution p = .839; main effect prandial state p = .095; main effect mouth rinse solution p = .277). In line, mean power output and heart rate during exercise did not differ between trials. In conclusion, a sucrose mouth rinse does not improve ~1-hr time trial performance in well-trained cyclists when performed in either the fasted or the fed state.


Author(s):  
Hilkka Kontro ◽  
Marta Kozior ◽  
Gráinne Whelehan ◽  
Miryam Amigo-Benavent ◽  
Catherine Norton ◽  
...  

Supplementing postexercise carbohydrate (CHO) intake with protein has been suggested to enhance recovery from endurance exercise. The aim of this study was to investigate whether adding protein to the recovery drink can improve 24-hr recovery when CHO intake is suboptimal. In a double-blind crossover design, 12 trained men performed three 2-day trials consisting of constant-load exercise to reduce glycogen on Day 1, followed by ingestion of a CHO drink (1.2 g·kg−1·2 hr−1) either without or with added whey protein concentrate (CHO + PRO) or whey protein hydrolysate (CHO + PROH) (0.3 g·kg−1·2 hr−1). Arterialized blood glucose and insulin responses were analyzed for 2 hr postingestion. Time-trial performance was measured the next day after another bout of glycogen-reducing exercise. The 30-min time-trial performance did not differ between the three trials (M ± SD, 401 ± 75, 411 ± 80, 404 ± 58 kJ in CHO, CHO + PRO, and CHO + PROH, respectively, p = .83). No significant differences were found in glucose disposal (area under the curve [AUC]) between the postexercise conditions (364 ± 107, 341 ± 76, and 330 ± 147, mmol·L−1·2 hr−1, respectively). Insulin AUC was lower in CHO (18.1 ± 7.7 nmol·L−1·2 hr−1) compared with CHO + PRO and CHO + PROH (24.6 ± 12.4 vs. 24.5 ± 10.6, p = .036 and .015). No difference in insulin AUC was found between CHO + PRO and CHO + PROH. Despite a higher acute insulin response, adding protein to a CHO-based recovery drink after a prolonged, high-intensity exercise bout did not change next-day exercise capacity when overall 24-hr macronutrient and caloric intake was controlled.


Author(s):  
Espen Tønnessen ◽  
Jonny Hisdal ◽  
Bent R. Ronnestad

Purpose: To determine the impact of interval training frequency in elite endurance athletes. It was hypothesized that two longer sessions would elicit greater performance improvements and physiological adaptation than four shorter sessions at the same intensity. Methods: Elite cross-country skiers and biathletes were randomly assigned to either a high-frequency group (HF group) (5 M, 1 F, age 22 (19–26), VO2max 67.8 (65.5–70.2) mL/kg/min) doing four short interval sessions per week or a low-frequency group (LF group) (8 M, 1 F, age 22 (18–23), VO2max 70.7 (67.0–73.9) mL/kg/min) doing two longer interval sessions. All interval sessions were performed at ~85% of maximum heart rate, and groups were matched for total weekly training volume. Pre- and post-intervention, athletes completed an 8 km rollerski time-trial, maximal oxygen uptake (VO2max) test, and an incremental, submaximal exercise test. Results: The LF group had a statistically significant improved time-trial performance following the intervention (p = 0.04), with no statistically significant changes in the HF group. Similarly, percentage utilization of VO2max at anaerobic threshold (p = 0.04) and exercise economy (p = 0.01) were statistically significantly improved following the intervention in the LF group only. No statistically significant changes in VO2max were observed in either group. Conclusions: Two longer interval sessions appear superior to four shorter sessions per week in promoting endurance adaptations and performance improvements in elite endurance athletes. Despite matched training volume and exercise intensity, the larger, more concentrated exercise stimulus in the LF group appears to induce more favorable adaptations. The longer time between training sessions in the LF group may also have allowed athletes to recover more effectively and better “absorb” the training. These findings are in line with the “best practice” observed by many of the world’s best endurance athletes.


2009 ◽  
Vol 19 (4) ◽  
pp. 400-409 ◽  
Author(s):  
Milou Beelen ◽  
Jort Berghuis ◽  
Ben Bonaparte ◽  
Sam B. Ballak ◽  
Asker E. Jeukendrup ◽  
...  

It has been reported previously that mouth rinsing with a carbohydrate-containing solution can improve cycling performance. The purpose of the current study was to investigate the impact of such a carbohydrate mouth rinse on exercise performance during a simulated time trial in a more practical, postprandial setting. Fourteen male endurance-trained athletes were selected to perform 2 exercise tests in the morning after consuming a standardized breakfast. They performed an ~1-hr time trial on a cycle ergometer while rinsing their mouths with either a 6.4% maltodextrin solution (CHO) or water (PLA) after every 12.5% of the set amount of work. Borg’s rating of perceived exertion (RPE) was assessed after every 25% of the set amount of work, and power output and heart rate were recorded continuously throughout the test. Performance time did not differ between treatments and averaged 68.14 ± 1.14 and 67.52 ± 1.00 min in CHO and PLA, respectively (p = .57). In accordance, average power output (265 ± 5 vs. 266 ± 5 W, p = .58), heart rate (169 ± 2 vs. 168 ± 2 beats/min, p = .43), and RPE (16.4 ± 0.3 vs. 16.7 ± 0.3 W, p = .26) did not differ between treatments. Furthermore, after dividing the trial into 8s, no differences in power output, heart rate, or perceived exertion were observed over time between treatments. Carbohydrate mouth rinsing does not improve time-trial performance when exercise is performed in a practical, postprandial setting.


Sign in / Sign up

Export Citation Format

Share Document