Effect of Climbing Speed on Pulmonary Oxygen Uptake and Muscle Oxygen Saturation Dynamics in the Finger Flexors

Author(s):  
Jan Gajdošík ◽  
Jirˇí Baláš ◽  
Dominika Krupková ◽  
Lukáš Psohlavec ◽  
Nick Draper

Purpose: Although sport climbing is a self-paced whole-body activity, speed varies with climbing style, and the effect of this on systemic and localized oxygen responses is not well understood. Therefore, the aim of the present study was to determine muscle and pulmonary oxygen responses during submaximal climbing at differing speeds of ascent. Methods: Thirty-two intermediate and advanced sport climbers completed three 4-minute-long ascents of the same route at 4, 6, and 9 m·min−1 on a motorized climbing ergometer (treadwall) on separate laboratory visits. Gas analysis and near-infrared spectroscopy were used to determine systemic oxygen uptake () and muscle oxygen saturation (StO2) of the flexor digitorum profundus. Results: Increases in ascent speed of 1 m·min−1 led to increases of by 2.4 mL·kg−1·min−1 (95% CI, 2.1 to 2.8 mL·kg−1·min−1) and decreases in StO2 by −1.3% (95% CI, 1.9% to −0.7%). There was a significant interaction of climbing ability and speed for StO2 (P < .001, ). The results revealed that the decrease of StO2 was present for intermediate but not advanced climbers. Conclusions: In this study, the results suggest that demand during climbing was largely determined by climbing speed; however, the ability level of the climber appeared to mitigate StO2 at a cellular level. Coaches and instructors may prescribe climbing ascents with elevated speed to improve generalized cardiorespiratory fitness. To stimulate localized aerobic capacity, however, climbers should perhaps increase the intensity of training ascents through the manipulation of wall angle or reduction of hold size.

2008 ◽  
Vol 33 (4) ◽  
pp. 743-752 ◽  
Author(s):  
Sirous Ahmadi ◽  
Peter J. Sinclair ◽  
Nasim Foroughi ◽  
Glen M. Davis

Eccentric exercise (EE), a common type of muscular activity whereby muscles lengthen and contract simultaneously, is associated with higher levels of force but may also evoke muscle damage. We investigated the hypothesis that unaccustomed EE might impair muscle oxygenation and muscle blood flow in healthy adults. Ten healthy males performed a bout of 70 maximal eccentric contractions of the elbow flexors. Before and after EE on day 1 and over the next 6 days, maximum voluntary isometric torque (MVT), serum creatine kinase (CK), and the changes in muscle oxygen saturation, blood flow, and oxygen uptake (using near-infrared spectroscopy) within the biceps brachii were assessed. MVT decreased, whereas muscle soreness and CK increased after EE (p < 0.05). Mean resting oxygen saturation increased by 22% after acute EE, and remained elevated by 5%–9% for the following 6 days. During isometric contractions, significant decreases were observed in oxygen desaturation and re-saturation kinetics after EE and these declines were also significantly prevalent over the following 6 days. Both muscle blood flow and oxygen uptake increased significantly after acute EE, but recovered on the next day. This study revealed some prolonged alterations in muscle oxygenation at rest and during exercise after EE, which might be due to a decrease in muscle oxygen consumption, an increase in oxygen delivery, and (or) a combination of both. However, both oxygen consumption and blood flow recovered within 24 h after the eccentric exercise session, and therefore, the reason(s) for the changes in tissue oxygen saturation remain unknown.


2007 ◽  
Vol 15 (21) ◽  
pp. 13715 ◽  
Author(s):  
Ye Yang ◽  
Olusola Soyemi ◽  
Peter J. Scott ◽  
Michelle R. Landry ◽  
Stuart M. Lee ◽  
...  

Author(s):  
Adeola A. Sanni ◽  
Kevin K. McCully

NIRS uses the relative absorption of light at 850nm and 760nm, to determine skeletal muscle oxygen saturation. Previous studies have used the ratio of both signals to report muscle oxygen saturation. Purpose: To evaluate the different approaches used to represent muscle oxygen saturation, and to evaluate the pulsations of the O2heme and Heme signal. Method: Twelve participants, ages 20-29years were tested on the forearm flexor muscles using continuous wave NIRS at rest. Measurements were taken during 2-3mins rest, during physiological calibration (5-minuts Ischemia) and during reperfusion.&nbsp; Results: There was a significant difference in pulse size between O2heme and Heme signal at the three locations (p &lt; 0.05). Resting oxygen saturation was 58.8+9.2%, 69.6+3.9%, and 89.2+6.9% when calibrated using O2heme, TSI, and Heme, respectively.&nbsp; Conclusion: The difference in magnitude of O2heme and Heme pulse with each heartbeat might suggest different anatomical locations of these signals, which propose calibrating with just one of the signals instead of the ratio of both. Calculations of physiological calibration must account for increased blood volume in the tissue, because of the changes in blood volume which appear to be primarily from the O2heme signal. Resting oxygen levels calibrated with Heme agrees with theoretical oxygen saturation.


Author(s):  
Claudia Miranda-Fuentes ◽  
Luis Javier Chirosa-Ríos ◽  
Isabel María Guisado-Requena ◽  
Pedro Delgado-Floody ◽  
Daniel Jerez-Mayorga

Background: This study aimed to report, through a systematic review of the literature, the baseline and final reference values obtained by near-infrared spectroscopy (NIRS) of muscle oxygen saturation (SmO2) during resistance training in healthy adults. Methods: Original research studies were searched from four databases (Scopus, PubMed, WOS, and SportDiscus). Subsequently, three independent reviewers screened the titles and abstracts, followed by full-text reviews to assess the studies’ eligibility. Results: Four studies met the inclusion criteria, data were extracted and methodological quality was assessed using the Downs and Black scale. Muscle oxygen saturation (% SmO2) during reported muscle strength exercises showed a decreasing trend after a muscle strength protocol; that is, before the protocol (range = 68.07–77.9%) and after (range = 9.50–46.09%). Conclusions: The trend of the SmO2 variables is to decrease after a muscle strength protocol. Studies are lacking that allow expanding the use of these devices during this type of training.


Sign in / Sign up

Export Citation Format

Share Document