Abstract
Purpose
Models of appetite control have been largely based on negative feedback from gut and adipose signaling to central appetite centers. However, contemporary models posit that fat-free mass (FFM) or the energy demand of FFM [i.e., resting metabolic rate (RMR)] may play a primary role in the motivational drive for food intake (i.e., food reinforcement). The relative reinforcing value of food (RRVfood) is associated with energy intake (EI) and increases with an acute energy deficit. Chronic exercise-induced energy deficits lead to alterations in fat mass (FM), FFM, and RMR and provide an opportunity to test whether change in (∆) FM, ∆FFM, ∆usual EI, or ∆RMR are associated with ∆RRVfood.
Methods
Participants (n = 29, BMI = 25–35 kg/m2) engaged in aerobic exercise expending 300 or 600 kcal, 5 days/weeks for 12 weeks. The reinforcing value of food (PMaxfood) was measured via a computer-based operant responding task and RRVfood was calculated as the reinforcing value of food relative to non-eating sedentary behaviors. RMR was determined by indirect calorimetry and body composition by DXA.
Results
Post-training FFM correlated with usual post-training EI (rs = 0.41, p < 0.05), PMaxfood (rs=0.52, p < 0.01), and RMR (rs = 0.85, p < 0.0001). ∆RMR negatively correlated with ∆PMaxfood (rs = − 0.38, p < 0.05) and with ∆RRVfood (rs = − 0.37, p < 0.05). ∆PMaxfood and ∆RRVfood were not associated with ∆FFM (p = 0.71, p = 0.57, respectively).
Conclusions
Reductions in RMR with weight loss may increase food reinforcement as means of restoring FFM and RMR to pre-weight loss amounts. Limiting reductions in RMR during weight loss may benefit weight maintenance by restricting increases in food reinforcement after weight loss.