Do Knee Moments Normalized to Measures of Knee Cartilage Area Better Classify the Severity of Knee Osteoarthritis?

2015 ◽  
Vol 31 (6) ◽  
pp. 415-422
Author(s):  
Nicholas M. Brisson ◽  
Paul W. Stratford ◽  
Saara Totterman ◽  
José G. Tamez-Peña ◽  
Karen A. Beattie ◽  
...  

Investigations of joint loading in knee osteoarthritis (OA) typically normalize the knee adduction moment to global measures of body size (eg, body mass, height) to allow comparison between individuals. However, such measurements may not reflect knee size. This study used a morphometric measurement of the cartilage surface area on the medial tibial plateau, which better represents medial knee size. This study aimed to determine whether normalizing the peak knee adduction moment and knee adduction moment impulse during gait to the medial tibial bone–cartilage interface could classify radiographic knee OA severity more accurately than traditional normalization techniques. Individuals with mild (N = 22) and severe (N = 17) radiographic knee OA participated. The medial tibial bone–cartilage interface was quantified from magnetic resonance imaging scans. Gait analysis was performed, and the peak knee adduction moment and knee adduction moment impulse were calculated in nonnormalized units and normalized to body mass, body weight × height, and the medial tibial bone–cartilage interface. Receiver operating characteristic curves compared the ability of each knee adduction moment normalization technique to classify participants according to radiographic disease severity. No normalization technique was superior at distinguishing between OA severities. Knee adduction moments normalized to medial knee size were not more sensitive to OA severity.

2018 ◽  
Vol 57 ◽  
pp. 150-158 ◽  
Author(s):  
Rosie E. Richards ◽  
Josien C. van den Noort ◽  
Martin van der Esch ◽  
Marjolein J. Booij ◽  
Jaap Harlaar

2009 ◽  
Vol 33 (2) ◽  
pp. 107-116 ◽  
Author(s):  
Robert J. Butler ◽  
Joaquin A. Barrios ◽  
Todd Royer ◽  
Irene S. Davis

The purpose of this study was to examine the effects of laterally wedged foot orthotic devices, used to treat knee osteoarthritis, on frontal plane mechanics at the rearfoot and hip during walking. Thirty individuals with diagnosed medial knee osteoarthritis were recruited for this study. Three dimensional kinematics and kinetics were recorded as the subjects walked in the laboratory at an intentional walking speed. Peak eversion, eversion excursion and peak eversion moment were increased while the peak knee adduction moment was reduced in the laterally wedged orthotic condition compared to the no wedge condition. In contrast, no changes were observed in the variables of interest at the hip. There was no significant relationship between the change in the peak frontal plane moment at the rearfoot and change in the peak frontal plane moment at the knee or hip as a result of the lateral wedge. Laterally wedged foot orthotic devices, used to treat knee osteoarthritis, do not influence hip mechanics. However, they do result in increased rearfoot eversion and inversion moment. Therefore, a full medical screen of the foot should occur before laterally wedged foot orthotic devices are prescribed as a treatment for knee osteoarthritis.


2015 ◽  
Vol 40 (4) ◽  
pp. 447-453 ◽  
Author(s):  
Eric M Lamberg ◽  
Robert Streb ◽  
Marc Werner ◽  
Ian Kremenic ◽  
James Penna

Background: Knee osteoarthritis is a prevalent disease. Unloading the affected compartment using a brace is a treatment option. Objectives: To determine whether a decompressive knee brace alters loading in medial knee osteoarthritis following 2 and 8 weeks of use. Study design: Within subjects; pre- and post-testing. Methods: A total of 15 individuals with medial knee osteoarthritis attended four sessions: baseline, fitting, 2 weeks after fitting (post), and 8 weeks after fitting (final). A gait analysis was performed at baseline (without knee brace), post and final. Knee adduction impulse, first and second peak knee adduction moment, knee motion, and walking velocity were calculated. Participants also recorded hours and steps taken while wearing the brace. Results: On average, the brace was worn for more than 6 h/day. Through use of repeated-measures analysis of variance, it was determined that the knee adduction impulse and second peak knee adduction moment were reduced ( p < 0.05) at post and final compared to baseline (36% and 34% reduction in knee adduction impulse, 26% reduction in second peak knee adduction moment for post and final, respectively). Furthermore, participants walked faster with increased knee motion during stance. Conclusion: The studied decompressive brace was effective in reducing potentially detrimental forces at the knee—knee adduction impulse and second peak knee adduction moment during the stance phase of gait. Clinical relevance The data from this study suggest that use of a medial unloading brace can reduce potentially detrimental adduction moments at the knee. Clinicians should use this evidence to advocate for use of this noninvasive treatment for people presenting with medial knee osteoarthritis.


Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5596
Author(s):  
Sizhong Wang ◽  
Peter P. K. Chan ◽  
Ben M. F. Lam ◽  
Zoe Y. S. Chan ◽  
Janet H. W. Zhang ◽  
...  

The present study compared the effect between walking exercise and a newly developed sensor-based gait retraining on the peaks of knee adduction moment (KAM), knee adduction angular impulse (KAAI), knee flexion moment (KFM) and symptoms and functions in patients with early medial knee osteoarthritis (OA). Eligible participants (n = 71) with early medial knee OA (Kellgren-Lawrence grade I or II) were randomized to either walking exercise or gait retraining group. Knee loading-related parameters including KAM, KAAI and KFM were measured before and after 6-week gait retraining. We also examined clinical outcomes including visual analog pain scale (VASP) and Knee Injury and Osteoarthritis Outcome Score (KOOS) at each time point. After gait retraining, KAM1 and VASP were significantly reduced (both Ps < 0.001) and KOOS significantly improved (p = 0.004) in the gait retraining group, while these parameters remained similar in the walking exercise group (Ps ≥ 0.448). However, KAM2, KAAI and KFM did not change in both groups across time (Ps ≥ 0.120). A six-week sensor-based gait retraining, compared with walking exercise, was an effective intervention to lower medial knee loading, relieve knee pain and improve symptoms for patients with early medial knee OA.


2012 ◽  
Vol 28 (5) ◽  
pp. 551-559 ◽  
Author(s):  
Joaquin A. Barrios ◽  
Todd D. Royer ◽  
Irene S. Davis

Dynamic knee alignment is speculated to have a stronger relationship to medial knee loading than radiographic alignment. Therefore, we aimed to determine what frontal plane knee kinematic variable correlated most strongly to the knee adduction moment. That variable was then compared with radiographic alignment as a predictor of the knee adduction moment. Therefore, 55 subjects with medial knee OA underwent three-dimensional gait analysis. A subset of 21 subjects also underwent full-limb radiographic assessment for knee alignment. Correlations and regression analyses were performed to assess the relationships between the kinematic, kinetic and radiographic findings. Peak knee adduction angle most strongly correlated to the knee adduction moment of the kinematic variables. In comparison with radiographic alignment, peak knee adduction angle was the stronger predictor. Given that most epidemiological studies on knee OA use radiographic alignment in an attempt to understand progression, these results are meaningful.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Yong Nie ◽  
Hua Wang ◽  
Bin Xu ◽  
ZongKe Zhou ◽  
Bin Shen ◽  
...  

Objectives. To investigate the relationship between external knee adduction moment (KAM) and knee osteoarthritis (OA) symptoms according to static alignment and pelvic drop. Methods. Ninety-five participants with symptomatic knee OA were included. Radiographic severity was graded by Kellgren and Lawrence (KL) scale. The hip-knee-ankle (HKA) angle was used to assess limb alignment from a full-length lower-limb radiograph. KAM-related variables (peak KAM and KAM impulse) and pelvic drop angle were determined from 3D gait analysis. Symptoms were assessed via visual analog scale (VAS) for pain and hospital for special surgery (HSS) score for physical function. The relationship between KAM and symptoms was evaluated according to radiographic severity and pelvic drop using linear models. Results. According to the more affected knee in the varus group, both the two KAM-related measures (peak KAM and KAM impulse) were positively associated with greater VAS pain and were negatively associated with HSS score. Only peak KAM was correlated with VAS and HSS in the valgus group. VAS pain score of the more affected knee was positively correlated with pelvic drop angle. Stratified by pelvic drop angle, KAM-related variables were more positively associated with VAS pain and negatively associated with HSS score for patients with pelvic drop angle ≤3 degrees. The relationships between KAM and symptoms according to radiographic disease severity remained confusing. Conclusions. Static alignment and pelvic drop angle significantly affected relationships between KAM-related variables and knee OA symptoms, which may explain the confusing results as shown by previous studies.


2020 ◽  
Author(s):  
Scott D Uhlrich ◽  
Julie A Kolesar ◽  
Łukasz Kidziński ◽  
Melissa A Boswell ◽  
Amy Silder ◽  
...  

Abstract Objectives The goal of this study was to evaluate the importance of personalization when selecting foot progression angle modifications that aim to reduce the peak knee adduction moment in individuals with medial knee osteoarthritis. Design One hundred seven individuals with medial knee osteoarthritis walked on an instrumented treadmill with biofeedback instructing them to toe-in and toe-out by 5° and 10° relative to their self-selected foot progression angle. We selected individuals’ personalized foot progression angle as the modification that maximally reduced their larger knee adduction moment peak. Additionally, we used lasso regression to identify which secondary changes in kinematics made a 10° toe-in gait modification more effective at reducing the first knee adduction moment peak. Results Sixty-six percent of individuals reduced their larger knee adduction moment peak by at least 5% with a personalized foot progression angle modification, which is more than (p<0.001) the 54% and 23% of individuals who reduced it with a uniformly-assigned 10° toe-in or toe-out modification, respectively. When toeing-in, greater reductions in the first knee adduction moment peak were related to an increased frontal-plane tibia angle (knee more medial than ankle), a more valgus knee abduction angle, reduced contralateral pelvic drop, and a more medialized center of pressure in the foot reference frame. Conclusions Personalization increases the proportion of individuals with medial knee osteoarthritis who may benefit from modification of their foot progression angle.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1418
Author(s):  
Yu Iwama ◽  
Kengo Harato ◽  
Shu Kobayashi ◽  
Yasuo Niki ◽  
Naomichi Ogihara ◽  
...  

Although the external knee adduction moment (KAM) during gait was shown to be a quantitative parameter of medial knee osteoarthritis (OA), it requires expensive equipment and a dedicated large space to measure. Therefore, it becomes a major reason to limit KAM measurement in a clinical environment. The purpose of this study was to estimate KAM using a single inertial measurement unit (IMU) during gait in patients with knee OA. A total of 22 medial knee OA patients (44 knee joints) performed conventional gait analysis using three-dimensional (3D) motion capture system. At the same time, we attached commercial IMUs to six body segments (sternum, pelvis, both thighs, and both shanks), and IMU signals during gait were recorded synchronized with the motion capture system. The peak-to-peak difference of acceleration in the lateral/medial axis immediately after heel contact was defined as the thrust acceleration (TA). We hypothesized that TA would represent the lateral thrust of the knee during the stance phase and correlate with the first peak of KAM. The relationship between the peak KAM and TA of pelvis (R = 0.52, p < 0.001), shanks (R = 0.57, p < 0.001) and thighs (R = 0.49, p = 0.001) showed a significant correlation. The root mean square error (RMSE) of linear regression models of pelvis, shanks, and thighs to estimate KAM were 0.082, 0.079, and 0.084 Nm/(kg·m), respectively. Our newly established parameter TA showed a moderate correlation with conventional KAM. The current study confirmed our hypothesis that a single IMU would predict conventional KAM during gait. Since KAM is known as an indicator for prognosis and severity of knee OA, this new parameter has the potential to become an accessible predictor for medial knee OA instead of KAM.


2013 ◽  
Vol 40 (3) ◽  
pp. 309-315 ◽  
Author(s):  
RICHARD K. JONES ◽  
GRAHAM J. CHAPMAN ◽  
ANDREW H. FINDLOW ◽  
LAURA FORSYTHE ◽  
MATTHEW J. PARKES ◽  
...  

Objective.Few if any prevention strategies are available for knee osteoarthritis (OA). In those with symptomatic medial OA, the contralateral knee may be at high risk of disease, and a reduction in medial loading in that knee might prevent disease or its progression there. Our aim was to determine how often persons with medial OA on 1 side had either concurrent or later medial OA on the contralateral side, and whether an intervention known to reduce medial loading in affected knees with medial OA might reduce medial loading in the contralateral knee. Lateral wedge insoles reduce loading across an affected medial knee but their effect on the contralateral knee is unknown.Methods.To determine the proportion of persons with medial knee OA who had concurrent medial contralateral OA or developed contralateral medial OA later, we examined knee radiographs from the longitudinal Framingham Osteoarthritis Study. Then, to examine an approach to reducing medial load in the contralateral knee, 51 people from a separate study with painful medial tibiofemoral OA underwent gait analysis wearing bilateral controlled shoes with no insoles, and then with 2 types of wedge insoles laterally posted by 5°. Primary outcome was the external knee adduction moment (EKAM) in the contralateral knee. Nonparametric CI were constructed around the median differences in percentage change in the affected and contralateral sides.Results.Of Framingham subjects with medial radiograph knee OA, 137/152 (90%) either had concurrent contralateral medial OA or developed it within 10 years. Of those with medial symptomatic knee OA, 43/67 (64%) had or developed the same disease state in the contralateral knee. Compared to a control shoe, medial loading was reduced substantially on both the affected (median percentage EKAM change −4.84%; 95% CI −11.33% to −0.65%) and contralateral sides (median percentage EKAM change −9.34%; 95% CI −10.57% to −6.45%).Conclusion.In persons with medial OA, the contralateral knee is also at high risk of medial OA. Bilateral reduction in medial loading in knees by use of strategies such as lateral wedge insoles might not only reduce medial load in affected knees but prevent knee OA or its progression on the contralateral side.


Sign in / Sign up

Export Citation Format

Share Document