scholarly journals Sensor-Based Gait Retraining Lowers Knee Adduction Moment and Improves Symptoms in Patients with Knee Osteoarthritis: A Randomized Controlled Trial

Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5596
Author(s):  
Sizhong Wang ◽  
Peter P. K. Chan ◽  
Ben M. F. Lam ◽  
Zoe Y. S. Chan ◽  
Janet H. W. Zhang ◽  
...  

The present study compared the effect between walking exercise and a newly developed sensor-based gait retraining on the peaks of knee adduction moment (KAM), knee adduction angular impulse (KAAI), knee flexion moment (KFM) and symptoms and functions in patients with early medial knee osteoarthritis (OA). Eligible participants (n = 71) with early medial knee OA (Kellgren-Lawrence grade I or II) were randomized to either walking exercise or gait retraining group. Knee loading-related parameters including KAM, KAAI and KFM were measured before and after 6-week gait retraining. We also examined clinical outcomes including visual analog pain scale (VASP) and Knee Injury and Osteoarthritis Outcome Score (KOOS) at each time point. After gait retraining, KAM1 and VASP were significantly reduced (both Ps < 0.001) and KOOS significantly improved (p = 0.004) in the gait retraining group, while these parameters remained similar in the walking exercise group (Ps ≥ 0.448). However, KAM2, KAAI and KFM did not change in both groups across time (Ps ≥ 0.120). A six-week sensor-based gait retraining, compared with walking exercise, was an effective intervention to lower medial knee loading, relieve knee pain and improve symptoms for patients with early medial knee OA.

2021 ◽  
pp. 026921552199363
Author(s):  
Martin Schwarze ◽  
Leonie P Bartsch ◽  
Julia Block ◽  
Merkur Alimusaj ◽  
Ayham Jaber ◽  
...  

Objective: To compare biomechanical and clinical outcome of laterally wedged insoles (LWI) and an ankle-foot orthosis (AFO) in patients with medial knee osteoarthritis. Design: Single-centre, block-randomized, cross-over controlled trial. Setting: Outpatient clinic. Subjects: About 39 patients with symptomatic medial knee osteoarthritis. Interventions: Patients started with either LWI or AFO, determined randomly, and six weeks later changed to the alternative. Main measures: Change in the 1st maximum of external knee adduction moment (eKAM) was assessed with gait analysis. Additional outcomes were other kinetic and kinematic changes and the patient-reported outcomes EQ-5D-5L, Oxford Knee Score (OKS), American Knee Society Clinical Rating System (AKSS), Hannover Functional Ability Questionnaire – Osteoarthritis and knee pain. Results: Mean age (SD) of the study population was 58 (8) years, mean BMI 30 (5). Both aids significantly improved OKS (LWI P = 0.003, AFO P = 0.001), AKSS Knee Score (LWI P = 0.01, AFO P = 0.004) and EQ-5D-5L Index (LWI P = 0.001, AFO P = 0.002). AFO reduced the 1st maximum of eKAM by 18% ( P < 0.001). The LWI reduced both maxima by 6% ( P = 0.02, P = 0.03). Both AFO and LWI reduced the knee adduction angular impulse (KAAI) by 11% ( P < 0.001) and 5% ( P = 0.05) respectively. The eKAM (1st maximum) and KAAI reduction was significantly larger with AFO than with LWI ( P = 0.001, P = 0.004). Conclusions: AFO reduces medial knee load more than LWI. Nevertheless, no clinical superiority of either of the two aids could be shown.


2015 ◽  
Vol 31 (6) ◽  
pp. 415-422
Author(s):  
Nicholas M. Brisson ◽  
Paul W. Stratford ◽  
Saara Totterman ◽  
José G. Tamez-Peña ◽  
Karen A. Beattie ◽  
...  

Investigations of joint loading in knee osteoarthritis (OA) typically normalize the knee adduction moment to global measures of body size (eg, body mass, height) to allow comparison between individuals. However, such measurements may not reflect knee size. This study used a morphometric measurement of the cartilage surface area on the medial tibial plateau, which better represents medial knee size. This study aimed to determine whether normalizing the peak knee adduction moment and knee adduction moment impulse during gait to the medial tibial bone–cartilage interface could classify radiographic knee OA severity more accurately than traditional normalization techniques. Individuals with mild (N = 22) and severe (N = 17) radiographic knee OA participated. The medial tibial bone–cartilage interface was quantified from magnetic resonance imaging scans. Gait analysis was performed, and the peak knee adduction moment and knee adduction moment impulse were calculated in nonnormalized units and normalized to body mass, body weight × height, and the medial tibial bone–cartilage interface. Receiver operating characteristic curves compared the ability of each knee adduction moment normalization technique to classify participants according to radiographic disease severity. No normalization technique was superior at distinguishing between OA severities. Knee adduction moments normalized to medial knee size were not more sensitive to OA severity.


2012 ◽  
Vol 28 (5) ◽  
pp. 551-559 ◽  
Author(s):  
Joaquin A. Barrios ◽  
Todd D. Royer ◽  
Irene S. Davis

Dynamic knee alignment is speculated to have a stronger relationship to medial knee loading than radiographic alignment. Therefore, we aimed to determine what frontal plane knee kinematic variable correlated most strongly to the knee adduction moment. That variable was then compared with radiographic alignment as a predictor of the knee adduction moment. Therefore, 55 subjects with medial knee OA underwent three-dimensional gait analysis. A subset of 21 subjects also underwent full-limb radiographic assessment for knee alignment. Correlations and regression analyses were performed to assess the relationships between the kinematic, kinetic and radiographic findings. Peak knee adduction angle most strongly correlated to the knee adduction moment of the kinematic variables. In comparison with radiographic alignment, peak knee adduction angle was the stronger predictor. Given that most epidemiological studies on knee OA use radiographic alignment in an attempt to understand progression, these results are meaningful.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1418
Author(s):  
Yu Iwama ◽  
Kengo Harato ◽  
Shu Kobayashi ◽  
Yasuo Niki ◽  
Naomichi Ogihara ◽  
...  

Although the external knee adduction moment (KAM) during gait was shown to be a quantitative parameter of medial knee osteoarthritis (OA), it requires expensive equipment and a dedicated large space to measure. Therefore, it becomes a major reason to limit KAM measurement in a clinical environment. The purpose of this study was to estimate KAM using a single inertial measurement unit (IMU) during gait in patients with knee OA. A total of 22 medial knee OA patients (44 knee joints) performed conventional gait analysis using three-dimensional (3D) motion capture system. At the same time, we attached commercial IMUs to six body segments (sternum, pelvis, both thighs, and both shanks), and IMU signals during gait were recorded synchronized with the motion capture system. The peak-to-peak difference of acceleration in the lateral/medial axis immediately after heel contact was defined as the thrust acceleration (TA). We hypothesized that TA would represent the lateral thrust of the knee during the stance phase and correlate with the first peak of KAM. The relationship between the peak KAM and TA of pelvis (R = 0.52, p < 0.001), shanks (R = 0.57, p < 0.001) and thighs (R = 0.49, p = 0.001) showed a significant correlation. The root mean square error (RMSE) of linear regression models of pelvis, shanks, and thighs to estimate KAM were 0.082, 0.079, and 0.084 Nm/(kg·m), respectively. Our newly established parameter TA showed a moderate correlation with conventional KAM. The current study confirmed our hypothesis that a single IMU would predict conventional KAM during gait. Since KAM is known as an indicator for prognosis and severity of knee OA, this new parameter has the potential to become an accessible predictor for medial knee OA instead of KAM.


2013 ◽  
Vol 40 (3) ◽  
pp. 309-315 ◽  
Author(s):  
RICHARD K. JONES ◽  
GRAHAM J. CHAPMAN ◽  
ANDREW H. FINDLOW ◽  
LAURA FORSYTHE ◽  
MATTHEW J. PARKES ◽  
...  

Objective.Few if any prevention strategies are available for knee osteoarthritis (OA). In those with symptomatic medial OA, the contralateral knee may be at high risk of disease, and a reduction in medial loading in that knee might prevent disease or its progression there. Our aim was to determine how often persons with medial OA on 1 side had either concurrent or later medial OA on the contralateral side, and whether an intervention known to reduce medial loading in affected knees with medial OA might reduce medial loading in the contralateral knee. Lateral wedge insoles reduce loading across an affected medial knee but their effect on the contralateral knee is unknown.Methods.To determine the proportion of persons with medial knee OA who had concurrent medial contralateral OA or developed contralateral medial OA later, we examined knee radiographs from the longitudinal Framingham Osteoarthritis Study. Then, to examine an approach to reducing medial load in the contralateral knee, 51 people from a separate study with painful medial tibiofemoral OA underwent gait analysis wearing bilateral controlled shoes with no insoles, and then with 2 types of wedge insoles laterally posted by 5°. Primary outcome was the external knee adduction moment (EKAM) in the contralateral knee. Nonparametric CI were constructed around the median differences in percentage change in the affected and contralateral sides.Results.Of Framingham subjects with medial radiograph knee OA, 137/152 (90%) either had concurrent contralateral medial OA or developed it within 10 years. Of those with medial symptomatic knee OA, 43/67 (64%) had or developed the same disease state in the contralateral knee. Compared to a control shoe, medial loading was reduced substantially on both the affected (median percentage EKAM change −4.84%; 95% CI −11.33% to −0.65%) and contralateral sides (median percentage EKAM change −9.34%; 95% CI −10.57% to −6.45%).Conclusion.In persons with medial OA, the contralateral knee is also at high risk of medial OA. Bilateral reduction in medial loading in knees by use of strategies such as lateral wedge insoles might not only reduce medial load in affected knees but prevent knee OA or its progression on the contralateral side.


2009 ◽  
Vol 69 (6) ◽  
pp. 1151-1154 ◽  
Author(s):  
Kim L Bennell ◽  
Mark W Creaby ◽  
Tim V Wrigley ◽  
Kelly-Ann Bowles ◽  
Rana S Hinman ◽  
...  

ObjectivesTo evaluate the relationship between mechanical loading, as indicated by the external knee adduction moment (KAM) during walking, and BML on MRI in people with medial knee osteoarthritis.MethodsMeasures were taken in 91 individuals with medial knee osteoarthritis. Logistic regression analyses were performed with the presence/absence of medial tibial or medial femoral BML as the outcome and either peak KAM or KAM impulse as the independent variable. Analyses were also adjusted for age, gender, body mass index, alignment and walking speed.ResultsIn adjusted analyses, peak KAM was significantly related to medial tibial (OR 2.3; 95%CI 1.07 to 4.7), but not medial femoral (OR 1.85; 95%CI 0.93 to 3.7) BML. KAM impulse was significantly related to both medial tibial (OR 9.4; 95%CI 1.53 to 57.2) and medial femoral (OR 14.4; 95%CI 2.3 to 89.8) BML.ConclusionsThe findings support the hypothesis that greater mechanical loading of the medial compartment plays a role in the pathogenesis of BML in medial tibiofemoral osteoarthritis.


2016 ◽  
Vol 41 (4) ◽  
pp. 356-363 ◽  
Author(s):  
Yoann Dessery ◽  
Étienne Belzile ◽  
Sylvie Turmel ◽  
Philippe Corbeil

Background: There is contradictory evidence regarding whether the addition of medial arch supports to laterally wedged insoles reduces knee adduction moment, improves comfort, and reduces knee pain during the late stance phase of gait. Objectives: To verify if such effects occur in participants with medial knee osteoarthritis. Study design: Randomized single-blinded study. Methods: Gait analysis was performed on 18 patients affected by medial knee osteoarthritis. Pain and comfort scores, frontal plane kinematics and kinetics of ankle, knee, and hip were compared in four conditions: without foot orthosis, with foot orthoses, with medial arch support, and with foot orthoses with medial arch support and lateral wedge insoles with 6° and 10° inclination. Results: Lower-extremity gait kinetics were characterized by a significant decrease, greater than 6%, in second peak knee adduction moment in laterally wedged insole conditions compared to the other conditions ( p < 0.001; effect size = 0.6). No significant difference in knee adduction moment was observed between laterally wedged insole conditions. In contrast, a significant increase of 7% in knee adduction moment during the loading response was observed in the customized foot orthoses without lateral inclination condition ( p < 0.001; effect size = 0.3). No difference was found in comfort or pain ratings between conditions. Conclusion: Our study suggests that customized foot orthoses with a medial arch support may only be suitable for the management of medial knee osteoarthritis when a lateral wedge is included. Clinical relevance Our data suggest that customized foot orthoses with medial arch support and a lateral wedge reduce knee loading in patients with medial knee osteoarthritis (KOA). We also found evidence that medial arch support may increase knee loading, which could potentially be detrimental in KOA patients.


2016 ◽  
Vol 96 (2) ◽  
pp. 167-175 ◽  
Author(s):  
Naoto Fukutani ◽  
Hirotaka Iijima ◽  
Takahiko Fukumoto ◽  
Daisuke Uritani ◽  
Eishi Kaneda ◽  
...  

Background Increasing evidence highlights potential associations between varus thrust and health domains associated with knee osteoarthritis (OA). Objective The aim of this study was to investigate the association between varus thrust and 2 subcategories—“pain and stiffness” and “activities of daily living (ADL)”—of the Japanese Knee Osteoarthritis Measure (JKOM). Design This was a cross-sectional study. Methods In total, 296 outpatients with knee OA visiting orthopedic clinics were enrolled. The inclusion criteria were age ≥50 years, medial knee OA and Kellgren-Lawrence (K/L) grade ≥1 in one or both knees, and the ability to walk independently. Standard posterior-anterior knee radiographs were measured for varus alignment. Participants were video recorded while walking and were evaluated for the presence or absence of varus thrust. Pain and stiffness of the knee joint and ADL were evaluated using the JKOM. Multivariate regressions (outcomes: pain and stiffness and ADL; predictor variable: varus thrust) were performed. Results Varus thrust was present in 46 (16.2%) of 284 patients. Multivariate regression analyses demonstrated that varus thrust is independently associated with pain and stiffness, adjusted for age, sex, body mass index, K/L grade, and varus alignment (β=.17, P=.005). However, the association between varus thrust and ADL was not significant (β=.11, P=.058). Based on sensitivity analyses, including participants of K/L grade 1 had little influence on this analysis. Limitations Only 16.2% of participants had a varus thrust. Moreover, a cause-effect relationship between varus thrust and pain and stiffness remains unknown due to the cross-sectional design of this study. Conclusions Varus thrust was associated with pain and stiffness in patients with medial knee OA. However, the association between varus thrust and ADL did not reach significance.


Sign in / Sign up

Export Citation Format

Share Document