Sex and Stride Impact Joint Stiffness During Loaded Running

2020 ◽  
pp. 1-7
Author(s):  
Tyler N. Brown ◽  
AuraLea C. Fain ◽  
Kayla D. Seymore ◽  
Nicholas J. Lobb

This study determined changes in lower limb joint stiffness when running with body-borne load, and whether they differ with stride or sex. Twenty males and 16 females had joint stiffness quantified when running (4.0 m/s) with body-borne load (20, 25, 30, and 35 kg) and 3 stride lengths (preferred or 15% longer and shorter). Lower limb joint stiffness, flexion range of motion (RoM), and peak flexion moment were submitted to a mixed-model analysis of variance. Knee and ankle stiffness increased 19% and 6% with load (P < .001, P = .049), but decreased 8% and 6% as stride lengthened (P = .004, P < .001). Decreased knee RoM (P < .001, 0.9°–2.7°) and increased knee (P = .007, up to 0.12 N.m/kg.m) and ankle (P = .013, up to 0.03 N.m/kg.m) flexion moment may stiffen joints with load. Greater knee (P < .001, 4.7°–5.4°) and ankle (P < .001, 2.6°–7.2°) flexion RoM may increase joint compliance with longer strides. Females exhibited 15% stiffer knee (P = .025) from larger reductions in knee RoM (4.3°–5.4°) with load than males (P < .004). Stiffer lower limb joints may elevate injury risk while running with load, especially for females.

2009 ◽  
Vol 50 (4) ◽  
pp. 735-759 ◽  
Author(s):  
T. Caliński ◽  
S. Czajka ◽  
Z. Kaczmarek ◽  
P. Krajewski ◽  
W. Pilarczyk

Ecology ◽  
1994 ◽  
Vol 75 (3) ◽  
pp. 717-722 ◽  
Author(s):  
Cynthia C. Bennington ◽  
William V. Thayne

Author(s):  
Mu Qiao ◽  
Feng Yang

Abstract Falling backward can lead to injuries including hip fracture, back injury, and traumatic brain impact among older adults. A loss of consciousness is associated with falling backward and accounts for about 13% of all falls among older adults. Little is known about the dynamics of backward falls, such as the falling duration, the impact severity, and how the fall dynamics are affected by the biomechanical properties of the lower limb joints, particularly the rotational stiffness. The purpose of this study was to investigate the influence of the stiffness of individual leg joints on the dynamics of backward falls after losing consciousness in terms of the falling duration and impact velocities. Based on a 15-segment human model, we simulated the process of falling backwards by sweeping the parameter space of ankle, knee, and hip's stiffness varying from 0 to 8.73 Nm/deg (or 500 Nm/rad). The results revealed that the falling duration and impact speeds of the head and hip ranged from 0.27 to 0.63 s, 2.65 to 7.88 m/s, and 0.35 to 3.36 m/s, respectively, when the stiffness of the leg joints changed within their limits. Overall, the influence of the joint stiffness on the falling dynamics (falling duration and impact speed) is comparable between hip and knee joints. Whereas, ankle stiffness showed little influence on the backward falling dynamics. Our findings could provide references for designing protective devices to prevent impact-induced injuries after a backward fall.


Author(s):  
Dana M. Lis ◽  
Matthew Jordan ◽  
Timothy Lipuma ◽  
Tayler Smith ◽  
Karine Schaal ◽  
...  

Background: Exercise and vitamin C-enriched collagen supplementation increase collagen synthesis, potentially increasing matrix density, stiffness, and force transfer. Purpose: To determine whether vitamin C-enriched collagen (hydrolyzed collagen [HC] + C) supplementation improves rate of force development (RFD) alongside a strength training program. Methods: Using a double-blinded parallel design, over 3 weeks, healthy male athletes (n = 50, 18–25 years) were randomly assigned to the intervention (HC + C; 20 g HC + 50 mg vitamin C) or placebo (20 g maltodextrin). Supplements were ingested daily 60 min prior to training. Athletes completed the same targeted maximal muscle power training program. Maximal isometric squats, countermovement jumps, and squat jumps were performed on a force plate at the same time each testing day (baseline, Tests 1, 2, and 3) to measure RFD and maximal force development. Mixed-model analysis of variance compared performance variables across the study timeline, whereas t tests were used to compare the change between baseline and Test 3. Results: Over 3 weeks, maximal RFD in the HC + C group returned to baseline, whereas the placebo group remained depressed (p = .18). While both groups showed a decrease in RFD through Test 2, only the treatment group recovered RFD to baseline by Test 3 (p = .036). In the HC + C group, change in countermovement jumps eccentric deceleration impulse (p = .008) and eccentric deceleration RFD (p = .04) was improved. A strong trend was observed for lower limb stiffness assessed in the countermovement jumps (p = .08). No difference was observed in maximal force or squat jump parameters. Conclusion: The HC + C supplementation improved RFD in the squat and countermovement jump alongside training.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9079
Author(s):  
Brooke A. Clemmons ◽  
Mackenzie A. Campbell ◽  
Liesel G. Schneider ◽  
Richard J. Grant ◽  
Heather M. Dann ◽  
...  

Overstocking can be a major issue in the dairy cattle industry, leading to negative changes in feeding and resting behavior. Additional stress imposed and alterations in feeding behavior may significantly impact the rumen microbiome. The rumen microbiome is responsible for the successful conversion of feed to usable energy for its host. Thus, understanding the effects of stocking density on the rumen microbiome is imperative for further elucidation of potentially negative consequences of overstocking in dairy cattle. This study implemented a Latin Square design accounting for four pens of cattle and four treatment periods so that all treatment combinations were assigned to every pen during one period of the study. Two treatment factors, including two levels of physically effective neutral detergent fiber, achieved with addition of chopped straw, and stocking density (100% vs. 142%) of freestalls and headlocks, were combined and tested within a factorial treatment design. Within each pen, three or four cannulated cows (n = 15 total) were sampled for rumen content on the final day of each treatment period. Each treatment was randomly assigned to a single pen for a 14-day period. The V1–V3 hypervariable regions of the 16S rRNA gene were targeted for bacterial analyses. Variables with approximately normally-distributed residuals and a Shapiro–Wilk statistic of ≥0.85 were analyzed using a mixed model analysis of variance with the GLIMMIX procedure with fixed effects of feed (straw vs. no straw), stocking density (100% vs. 142%), and the interaction of feed × stocking density, and random effects of pen, period, feed × stocking × pen × period. Pen was included as the experimental unit in a given period and the sampling unit as cow. Variables included Shannon’s Diversity Index, Faith’s phylogenetic diversity index, chao1, observed OTU, and Simpson’s evenness E as well as most individual taxa. Data were analyzed in SAS 9.4 utilizing the GLIMMIX procedure to perform mixed model analysis of variance. If data were not normally distributed, a ranked analysis was performed. No differences were observed in α-diversity metrics by fiber or stocking density (P > 0.05). Beta diversity was assessed using weighted and unweighted Unifrac distances in QIIME 1.9.1 and analyzed using ANOSIM. No differences were observed in weighted (P = 0.6660; R = −0.0121) nor unweighted (P = 0.9190; R = −0.0261) metrics and R values suggested similar bacterial communities among treatments. At the phylum level, Tenericutes differed among treatments with an interaction of stocking density by feed (P = 0.0066). At the genus level, several differences were observed by treatment, including Atopobium (P = 0.0129), unidentified members of order RF39 (P = 0.0139), and unidentified members of family Succinivibrionaceae (P = 0.0480). Although no diversity differences were observed, taxa differences may indicate that specific taxa are affected by the treatments, which may, in turn, affect animal production.


Technometrics ◽  
1987 ◽  
Vol 29 (4) ◽  
pp. 413-426 ◽  
Author(s):  
Richard J. Beckman ◽  
Christopher J. Nachtsheim ◽  
R. Dennis Cook

Sign in / Sign up

Export Citation Format

Share Document