Abdominal Muscles Dominate Contributions to Vertebral Joint Stiffness during the Push-up

2008 ◽  
Vol 24 (2) ◽  
pp. 130-139 ◽  
Author(s):  
Samuel J. Howarth ◽  
Tyson A.C. Beach ◽  
Jack P. Callaghan

The goal of this study was to quantify the relative contributions of each muscle group surrounding the spine to vertebral joint rotational stiffness (VJRS) during the push-up exercise. Upper-body kinematics, three-dimensional hand forces and lumbar spine postures, and 14 channels (bilaterally from rectus abdominis, external oblique, internal oblique, latissimus dorsi, thoracic erector spinae, lumbar erector spinae, and multifidus) of trunk electromyographic (EMG) activity were collected from 11 males and used as inputs to a biomechanical model that determined the individual contributions of 10 muscle groups surrounding the lumbar spine to VJRS at five lumbar vertebral joints (L1-L2 to L5-S1). On average, the abdominal muscles contributed 64.32 ± 8.50%, 86.55 ± 1.13%, and 83.84 ± 1.95% to VJRS about the flexion/extension, lateral bend, and axial twist axes, respectively. Rectus abdominis contributed 43.16 ± 3.44% to VJRS about the flexion/extension axis at each lumbar joint, and external oblique and internal oblique, respectively contributed 52.61 ± 7.73% and 62.13 ± 8.71% to VJRS about the lateral bend and axial twist axes, respectively, at all lumbar joints with the exception of L5-S1. Owing to changes in moment arm length, the external oblique and internal oblique, respectively contributed 55.89% and 50.01% to VJRS about the axial twist and lateral bend axes at L5-S1. Transversus abdominis, multifidus, and the spine extensors contributed minimally to VJRS during the push-up exercise. The push-up challenges the abdominal musculature to maintain VJRS. The orientation of the abdominal muscles suggests that each muscle primarily controls the rotational stiffness about a single axis.

2020 ◽  
Vol 29 (7) ◽  
pp. 993-1000
Author(s):  
James W. Youdas ◽  
Hannah E. Baartman ◽  
Brian J. Gahlon ◽  
Tyler J. Kohnen ◽  
Robert J. Sparling ◽  
...  

Context: Suspension training devices use body weight resistance and unstable support surfaces that may facilitate muscle recruitment during push-up exercises. Objective: The authors examined muscle recruitment with surface electromyography on 4 shoulder and 4 torso muscles during (1) standard push-ups, (2) feet-suspended push-ups, (3) hands-suspended push-ups, and (4) dual-instability push-ups in which feet were suspended and hands were on unstable surfaces. Design: Cross-sectional design with repeated measures. Setting: Biomechanics laboratory. Participants: Thirty-two healthy men and women (mean age, 24.3 y; mean body mass index, 24.6 kg·m−2) participated. Intervention: Participants were tested while performing 2 repetitions each of 4 variations of push-ups. Main Outcome Measures: Muscle recruitment, normalized to maximum voluntary isometric contraction, was measured in 4 prime movers (anterior deltoid, pectoralis major, serratus anterior, and triceps brachii) and 4 torso stabilizers (external oblique, internal oblique, rectus abdominis, and upper erector spinae). Results: Muscle recruitment in the anterior deltoid, pectoralis major, and serratus anterior during suspended exercises was no greater than during standard push-ups. In contrast, torso stabilizer recruitment was significantly greater in the external oblique, internal oblique, and rectus abdominis during all 3 suspended exercises compared with standard push-ups. Suspended exercises under a dual-instability condition did not generate greater levels of muscle activation compared with conditions of single instability. Conclusions: Push-ups performed with suspension training systems may provide benefit if one’s goal is to enhance torso muscle training. One unstable surface may be sufficiently challenging for the client or athlete when performing push-up exercises with a suspension training device.


Author(s):  
Iria Da Cuña-Carrera ◽  
Alejandra Alonso-Calvete ◽  
Eva M. Lantarón-Caeiro ◽  
Mercedes Soto-González

This study analyzes the effects of hypopressive exercises on the abdominal thickness of healthy subjects and compares the performance between women and men. We conducted a transversal observational study in 98 subjects (63% women). The muscle thickness is analyzed in transversus abdominis, internal oblique, external oblique, and rectus abdominis with ultrasound imaging at rest and during the hypopressive exercise (HE) in supine and standing position. Comparisons between rest and hypopressive exercise are carried out in the two different positions and between women and men. In the supine position, there is a significant activation of the transversus abdominis and internal oblique during hypopressive exercise (p < 0.001), and it is similar in both sexes, the external oblique is only activated significantly by men (p < 0.001) and rectus abdominis had no significant activation (p > 0.05). Our results show that standing transversus abdominis and external oblique significantly increased their thickness during HE with higher effects in men. Internal oblique also increased significantly, but with higher effects in women, and rectus abdominis had no significant increase. Men had similar effects to women during HE, with an activation of the deepest abdominal muscles. The unequal anatomy and the position could explain the different results obtained between the sexes.


1994 ◽  
Vol 77 (3) ◽  
pp. 1393-1398 ◽  
Author(s):  
A. M. Leevers ◽  
J. D. Road

We previously found the internal abdominal muscle layer to be preferentially recruited during expiratory threshold loading in anesthetized and awake dogs. Expiratory threshold loading increases end-expiratory lung volume and hence can activate reflex pathways such as tonic vagal reflexes, which could influence abdominal muscle recruitment. Our objectives in the present study were to determine the effects of hypercapnia on abdominal muscle activation and the pattern of recruitment in awake dogs. Five tracheotomized dogs were chronically implanted with sonomicrometer transducers and fine-wire electromyogram (EMG) electrodes in each of the four abdominal muscles: transversus abdominis, internal oblique, external oblique, and rectus abdominis. Muscle length changes and EMG activity were studied in the awake dog at rest and during CO2 rebreathing. CO2 rebreathing produced a tripling of tidal volume and activation of the abdominal muscles. Despite the increase in tidal volume, there was no significant change in abdominal muscle end-inspiratory length. Both tonic and phasic expiratory shortening were greater in the internal muscle layer (transversus abdominis and internal oblique) than in the external muscle layer (external oblique and rectus abdominis). We conclude that the internal abdominal muscles are preferentially recruited by hypercapnia and vagal reflexes probably do not contribute to this differential recruitment but that segmental reflexes may be involved. The mechanical consequences of this recruitment are discussed.


2020 ◽  
Vol 27 (2) ◽  
pp. 1-9
Author(s):  
Fernanda Lenise Soares Ferreira ◽  
Valéria Mayaly Alves de Oliveira ◽  
Michelle Ribeiro Santos ◽  
Vinícius Yan Santos Nascimento ◽  
Ana Carolina Rodarti Pitangui ◽  
...  

Background/aims Core training has been recommended in shoulder rehabilitation programs. However, the evidence on this topic is still scarce. The aim of this study was to investigate the effect of conscious abdominal contraction combined with unstable surfaces on electromyographic activity of periscapular muscles during the plus phase of a push-up. Methods A total of 20 male participants (22.8 ± 2.5 years) were evaluated. Electromyographic signals were collected from the upper, middle and lower trapezius, serratus anterior, and external and internal oblique muscles during push-up exercises on a stable and unstable surface with and without the conscious abdominal contraction. Each participant performed four variations of the plus phase of a push-up. Results The results demonstrated that the conscious abdominal contraction caused an increase in the electromyographic activity of external oblique, internal oblique, serratus anterior and lower trapezius muscles (P≤0.008). The unstable surface caused only a relevant increase in electromyographic activity of the abdominal muscles (P≤0.025). Combining the two strategies did not increase the electromyographic activity of any muscles (P≥0.238). Conclusions The conscious abdominal contraction seems to be a viable strategy to increase the electromyographic activity of the periscapular muscles.


2000 ◽  
Vol 88 (4) ◽  
pp. 1207-1214 ◽  
Author(s):  
Donald C. Bolser ◽  
Paul J. Reier ◽  
Paul W. Davenport

The present study was conducted to determine the pattern of activation of the anterolateral abdominal muscles during the cough reflex. Electromyograms (EMGs) of the rectus abdominis, external oblique, internal oblique, transversus abdominis, and parasternal muscles were recorded along with gastric pressure in anesthetized cats. Cough was produced by mechanical stimulation of the lumen of the intrathoracic trachea or larynx. The pattern of EMG activation of these muscles during cough was compared with that during graded expiratory threshold loading (ETL; 1–30 cmH2O). ETL elicited differential recruitment of abdominal muscle EMG activity (transversus abdominis > internal oblique > rectus abdominis ≅ external oblique). In contrast, both laryngeal and tracheobronchial cough resulted in simultaneous activation of all four anterolateral abdominal muscles with peak EMG amplitudes 3- to 10-fold greater than those observed during the largest ETL. Gastric pressures during laryngeal and tracheobronchial cough were at least eightfold greater than those produced by the largest ETL. These results suggest that, unlike their behavior during expiratory loading, the anterolateral abdominal muscles act as a unit during cough.


1993 ◽  
Vol 75 (4) ◽  
pp. 1452-1459 ◽  
Author(s):  
A. M. Leevers ◽  
J. D. Road

The objective of this study was to examine the effects of posture on tonic and phasic expiratory activity of the abdominal muscles in awake dogs. Six tracheostomized dogs were chronically instrumented with sonomicrometer transducers and bipolar electromyographic electrodes placed in each of the four abdominal muscles. To determine the effects of posture on tonic and phasic activity of individual abdominal muscles, muscle resting length (Lr) and tidal length changes (%Lr), respectively, were measured in awake dogs in the left lateral decubitus (LLD), sitting, and standing (STAND) positions. The transversus abdominis Lr consistently shortened when the dog was moved from LLD to STAND and lengthened when the dog was moved from LLD to the sitting position, and the external oblique Lr consistently lengthened when the dog went from LLD to STAND. The internal oblique and rectus abdominis had no consistent changes in Lr with a change in position. All four abdominal muscles actively shortened (%Lr) more in the upright positions. In addition, the internal layer (transversus abdominis and internal oblique) actively shortened more than the external layer (rectus abdominis and external oblique). In conclusion, both tonic and phasic respiratory activity of the abdominal muscles, reflected by changes in Lr and %Lr, respectively, were affected by changes in posture.


2021 ◽  
pp. 1-7
Author(s):  
Iria Da Cuña-Carrera ◽  
Alejandra Alonso-Calvete ◽  
Yoana González-González ◽  
Mercedes Soto-González

BACKGROUND: The underlying morphology and behavior of abdominal muscles during breathing are still lacking in knowledge in healthy population. OBJECTIVE: To analyze the effects of three different types of breathing on the architectural characteristics of abdominal muscles. METHODS: Ninety-eight healthy subjects were measured to assess the effects of breathing on the abdominal muscles, subjects performed three different types of breathing and the muscular thickness was measured with ultrasound imaging, analyzing also the differences between sexes. RESULTS: During the three different types of breathing and in comparison with the resting state, an increase of the thickness has been reported in the transversus abdominis (p< 0.001; effect size = 2.44, very large) and internal oblique (p< 0.001; effect size = 1.04, moderate) in both sexes, but with a higher increase in men. External oblique and rectus abdominis increased their thickness through breathing only while the lips were with pursed (p< 0.05) with trivial effect sizes and only differences between sexes were found in rectus abdominis. CONCLUSIONS: All breathings activated the deepest abdominal muscles, but the most superficial were only activated with lips pursed. Moreover, men appeared to activate more the deepest abdominal muscles but also the rectus abdominis. Findings in this study support the use of different types of breathing depending on the muscle to be activated or the sex, helping health care professionals to address their interventions on the abdominal muscles with a more focused approach.


Author(s):  
Sang-Yeol Lee ◽  
Se-Yeon Park

BACKGROUND: Recent clinical studies have revealed the advantages of using suspension devices. Although the supine, lateral, and forward leaning bridge exercises are low-intensity exercises with suspension devices, there is a lack of studies directly comparing exercise progression by measuring muscular activity and subjective difficulty. OBJECTIVE: To identify how the variations in the bridge exercise affects trunk muscle activity, the present study investigated changes in neuromuscular activation during low-intensity bridge exercises. We furthermore explored whether the height of the suspension point affects muscle activation and subjective difficulty. METHODS: Nineteen asymptomatic male participants were included. Three bridge exercise positions, supine bridge (SB), lateral bridge (LB), forward leaning (FL), and two exercise angles (15 and 30 degrees) were administered, thereby comparing six bridge exercise conditions with suspension devices. Surface electromyography and subjective difficulty data were collected. RESULTS: The rectus abdominis activity was significantly higher with the LB and FL exercises compared with the SB exercise (p< 0.05). The erector spinae muscle activity was significantly higher with the SB and LB exercises, compared with the FL exercise (p< 0.05). The LB exercise significantly increased the internal oblique muscle activity, compared with other exercise variations (p< 0.05). The inclination angle of the exercise only affected the internal oblique muscle and subjective difficulty, which were significantly higher at 30 degrees compared with 15 degrees (p< 0.05). CONCLUSIONS: Relatively higher inclination angle was not effective in overall activation of the trunk muscles; however, different bridge-type exercises could selectively activate the trunk muscles. The LB and SB exercises could be good options for stimulating the internal oblique abdominis, and the erector spinae muscle, while the FL exercise could minimize the erector spinae activity and activate the abdominal muscles.


2019 ◽  
Vol 17 (2) ◽  
pp. 153-160
Author(s):  
Catiane Souza ◽  
Edgar Santiago Wagner Neto ◽  
Fabiane De Oliveira Brauner ◽  
Debora Cantergi ◽  
Willian Dhein ◽  
...  

Introdução: A correta ativação da musculatura estabilizadora do tronco é essencial em diversas situações, inclusive prevenção e tratamento de lombalgias. A ativação adequada desses músculos é um princípio do Método Pilates, porém nem todos os efeitos das variações dos exercícios estão descritos da literatura. Objetivo: comparar a atividade elétrica de músculos do power house (reto abdominal, oblíquo externo, oblíquo interno/transverso abdominal e multífido) durante a execução do exercício Leg Circles no aparelho Cadillac com mola alta e com mola baixa. Métodos: Foram selecionadas 10 instrutoras de Pilates, 30 anos (±5), 58 Kg (±7), estatura 163 cm (±7) que foram submetidas a testes de contrações isométricas voluntárias máximas, e logo após, à realização do Leg Circles no Cadillac com a mola alta e baixa. Foi coletada a atividade elétrica dos músculos reto abdominal, oblíquo interno/transverso abdominal, oblíquo externo e multífido. Resultados: A ativação do oblíquo interno foi maior na mola alta (p=0,002), assim como a ativação do multífido (p=0,042). Já o oblíquo externo foi mais ativado na mola baixa (p=0,001). O reto abdominal não variou sua ativação (p=0,375). Conclusão: A mola alta pode ser acatada como a posição mais adequada para ativar a musculatura profunda do tronco, visto que nesta situação houve maior ativação do multífido e do oblíquo interno/transverso abdominal, somados à menor ativação do oblíquo externo e a baixa ativação no reto abdominal encontrados na situação com mola alta. ABSTRACT. Leg circles on Cadillac: effect of different spring positions on the activation of stabilizers in the trunk. Background: The correct activation of the trunk stabilizing muscles is essential in several situations, including prevention and treatment of low back pain. Proper activation of these muscles is a principle of the Pilates Method, but not all the effects of exercise variations are described in the literature. Objective: compare the electric activity of power house muscles (rectus abdominis, external oblique, internal oblique/transverse abdominal and multifidus) during the execution of the Leg Circles exercise with high spring and low spring in Cadillac apparatus. Methods: Ten Pilates instructors were selected, with 30 years (±5), 58 kg (±7), 163 cm (±7) who underwent maximum voluntary isometric contraction tests before the execution of the Leg Circles on the Cadillac, with high and low spring. The electrical activity of the rectus abdominis, internal oblique/transverso abdominal, external oblique and multifidus muscles was collected. Results: The internal oblique (p=0,002) and the multifidus (p=0,042) activations were greater on the high spring. However, the external oblique showed a higher activation on the lower spring (p = 0.001). The abdominal rectus did not change its activation = 0.375). Conclusion: The high spring can be considered as the most suitable position to ac-tivate the deep musculature of the trunk, since the greater activation of the multifidus and of the internal oblique/transverse abdominal, together with the lower activation of the external oblique and the low acti-vation in the rectus abdominus found in the high spring situation.


2019 ◽  
Vol 28 (7) ◽  
pp. 682-691 ◽  
Author(s):  
Kunal Bhanot ◽  
Navpreet Kaur ◽  
Lori Thein Brody ◽  
Jennifer Bridges ◽  
David C. Berry ◽  
...  

Context:Dynamic balance is a measure of core stability. Deficits in the dynamic balance have been related to injuries in the athletic populations. The Star Excursion Balance Test (SEBT) is suggested to measure and improve dynamic balance when used as a rehabilitative tool.Objective:To determine the electromyographic activity of the hip and the trunk muscles during the SEBT.Design:Descriptive.Setting:University campus.Participants:Twenty-two healthy adults (11 males and 11 females; 23.3 [3.8] y, 170.3 [7.6] cm, 67.8 [10.3] kg, and 15.1% [5.0%] body fat).Intervention:Surface electromyographic data were collected on 22 healthy adults of the erector spinae, external oblique, and rectus abdominis bilaterally, and gluteus medius and gluteus maximus muscle of the stance leg. A 2-way repeated measures analysis of variance was used to determine the interaction between the percentage maximal voluntary isometric contraction (%MVIC) and the reach directions. The %MVIC for each muscle was compared across the 8 reach directions using the Sidak post hoc test withαat .05.Main Outcome Measures:%MVIC.Results:Significant differences were observed for all the 8 muscles. Highest electromyographic activity was found for the tested muscles in the following reach directions—ipsilateral external oblique (44.5% [38.4%]): anterolateral; contralateral external oblique (52.3% [40.8%]): medial; ipsilateral rectus abdominis (8% [6.6%]): anterior; contralateral rectus abdominis (8% [5.3%]): anteromedial; ipsilateral erector spinae (46.4% [20.2%]): posterolateral; contralateral erector spinae (33.5% [11.3%]): posteromedial; gluteus maximus (27.4% [11.7%]): posterior; and gluteus medius (54.6% [26.1%]): medial direction.Conclusions:Trunk and hip muscle activation was direction dependent during the SEBT. This information can be used during rehabilitation of the hip and the trunk muscles.


Sign in / Sign up

Export Citation Format

Share Document