The Effect of External Ankle Support on Vertical Ground-Reaction Force and Lower Body Kinematics

2005 ◽  
Vol 14 (4) ◽  
pp. 301-312 ◽  
Author(s):  
Brad Hodgson ◽  
Laurie Tis ◽  
Steven Cobb ◽  
Elizabeth Higbie

Objective:To examine the effects of external ankle support on vertical ground-reaction forces (VGRF) and kinematic data.Methods:Subjects completed 2 braced and 2 nonbraced 0.61-m hanging drop landings onto a force platform. Kinematic data were collected with 8 digital-optical cameras sampling at 120 Hz.Subjects:12 Division I female volleyball players.Statistical Analysis:A repeated-measures ANOVA with Bonferroni correction (P < .05) was used to determine whether significant differences existed between test conditions for peak VGRF, loading rate, hip angle, knee angle, and ankle angle at right-foot contact for peak 1 and peak 2 of the VGRF curve over the first 100 milliseconds of the landing phase, as well as total hip range of motion (ROM), total knee ROM, and total ankle ROM for the entire landing phase.Results:There were significant increases in peak P1 and LR1 and a significant decrease in ankle-angle change at right-foot contact in braced trials compared with the nonbraced condition.

2001 ◽  
Vol 10 (2) ◽  
pp. 132-142 ◽  
Author(s):  
Andrew G Jameson ◽  
Stephen J Kinzey ◽  
Jeffrey S Hallam

Context:Cryotherapy is commonly used in the care of acute and chronic injuries. It decreases pain, reduces swelling, and causes vasoconstriction of blood vessels. Its detrimental effects on motor activity might predispose physically active individuals to further injury.Objective:To examine the effects of cryotherapy on vertical-ground-reaction-force (VGRF) during a 2-legged landing from a 2-legged targeted vertical jump.Design:2 × 4 MANOVA with repeated measures.Setting:Biomechanics laboratory.Participants:10 men, means: 22.40 ± 1.26 years, 76.01 ± 26.95 kg, 182.88 ± 6.88 cm.Intervention:VGRF during landing from a targeted vertical jump (90% of maximum) was measured before and after four 20-minute cryotherapy treatments.Results:There were no significant differences in VGRF as a result of cryotherapy.Conclusion:Under the constraints of this study there is no evidence that returning to activity immediately after cryotherapy predisposes an athlete to injury because of a change in VGRF.


2013 ◽  
Vol 10 (84) ◽  
pp. 20130241 ◽  
Author(s):  
Sam Van Wassenbergh ◽  
Peter Aerts

The forelimbs of lizards are often lifted from the ground when they start sprinting. Previous research pointed out that this is a consequence of the propulsive forces from the hindlimbs. However, despite forward acceleration being hypothesized as necessary to lift the head, trunk and forelimbs, some species of agamids, teiids and basilisks sustain running in a bipedal posture at a constant speed for a relatively long time. Biomechanical modelling of steady bipedal running in the agamid Ctenophorus cristatus now shows that a combination of three mechanisms must be present to generate the angular impulse needed to cancel or oppose the effect of gravity. First, the trunk must be lifted significantly to displace the centre of mass more towards the hip joint. Second, the nose-up pitching moment resulting from aerodynamic forces exerted at the lizard's surface must be taken into account. Third, the vertical ground-reaction forces at the hindlimb must show a certain degree of temporal asymmetry with higher forces closer to the instant of initial foot contact. Such asymmetrical vertical ground-reaction force profiles, which differ from the classical spring-mass model of bipedal running, seem inherent to the windmilling, splayed-legged running style of lizards.


2000 ◽  
Vol 9 (1) ◽  
pp. 3-14 ◽  
Author(s):  
Stephen J. Kinzey ◽  
Mitchell L. Cordova ◽  
Kevin J. Gallen ◽  
Jason C. Smith ◽  
Justin B. Moore

Objective:To determine whether a standard 20-min ice-bath (10°C) immersion of the leg alters vertical ground-reaction-force components during a 1 -legged vertical jump.Design:A 1 × 5 factorial repeated-measures model was used.Setting:The Applied Biomechanics Laboratory at The University of Mississippi.Participants:Fifteen healthy and physically active subjects (age = 22.3 ± 2.1 years, height = 177.3 ± 12.2 cm, mass = 76.3 ± 19.1 kg) participated.Intervention:Subjects performed 25 one-legged vertical jumps with their preferred extremity before (5 jumps) and after (20 jumps) a 20-min cold whirlpool to the leg. The 25 jumps were reduced into 5 sets of average trials.Main Outcome Measures:Normalized peak and average vertical ground-reaction forces, as well as vertical impulse obtained using an instrumented force platform.Results:Immediately after cryotherapy (sets 2 and 3), vertical impulse decreased (P= .01); peak vertical ground-reaction force increased (set 2) but then decreased toward baseline measures (P= .02). Average vertical ground-reaction force remained unchanged (P>.05).Conclusions:The authors advocate waiting approximately 15 min before engaging in activities that require the production of weight-bearing explosive strength or power.


Obesities ◽  
2021 ◽  
Vol 1 (3) ◽  
pp. 209-219
Author(s):  
Mariana Borba Gomes ◽  
Luana Siqueira Andrade ◽  
Gabriela Neves Nunes ◽  
Marina Krause Weymar ◽  
Gustavo Zaccaria Schaun ◽  
...  

The aquatic environment represents an adequate and safe alternative for children with overweight to exercise. However, the magnitude of the vertical ground reaction force (Fz) during these exercises is unknown in this population. Therefore, our study aimed to compare the Fz during the stationary running exercise between the aquatic and land environments in children with overweight or obesity. The study is characterized as a cross-over study. Seven children, two with overweight and five with obesity (4 boys and 3 girls; 9.7 ± 0.8 years), performed two experimental sessions, one on land and another in the aquatic environment. In both conditions, each participant performed 15 repetitions of the stationary running exercise at three different cadences (60, 80, and 100 b min−1) in a randomized order. Their apparent weight was reduced by 72.1 ± 10.4% on average at the xiphoid process depth. The peak Fz, impulse, and loading rate were lower in the aquatic environment than on land (p < 0.001). Peak Fz was also lower at 80 b min−1 compared to 100 b min−1 (p = 0.005) and loading rate was higher at 100 b min−1 compared to 80 b min−1 (p = 0.003) and 60 b min−1 (p < 0.001) in the aquatic environment, whereas impulse was significantly reduced (p < 0.001) with the increasing cadence in both environments. It can be concluded that the aquatic environment reduces all the Fz outcomes investigated during stationary running and that exercise intensity seems to influence all these outcomes in the aquatic environment.


2018 ◽  
Vol 31 (05) ◽  
pp. 327-331 ◽  
Author(s):  
Gabriella Sandberg ◽  
Bryan Torres ◽  
Amanda Berjeski ◽  
Steven Budsberg

Objective This article compares simultaneously collected kinetic data (percent limb distribution and limb symmetry) with force plates (FP) and a pressure walkway. Animals This study included 18 healthy client-owned adult dogs. Methods Vertical ground reaction force and pressure data were collected during two sessions 1 week apart (days 1 and 7) using both FP and pressure mat systems. Vertical ground reaction forces and vertical pressure data were each collected alone as well as simultaneously. A mixed effects model was used to test for differences in force, force percent data and symmetry indices (SI) that were calculated for the thoracic and pelvic limb pairs, between collection systems. A Pearson's correlation was used to test for correlations between force, force percentage and SI. Results There was no difference in peak vertical force (PVF) or total pressure index (TPI) data collected alone or when collected with pressure mat overlay the FP. Small but significant differences were found in percent limb distribution between PVF% and TPI%. Significant differences were found in the calculated SI for forelimbs and hindlimbs. Correlations between the PVF% and TPI% distribution were significant in both the fore- and hindlimbs. While there was a significant correlation between the forelimb SI, there was no significant correlation between the SI in the hindlimbs. Clinical Significance The method of calculating PVF and TPI percentages allowed for comparison between the collection methods. Significant differences were noted in the calculated SI between the collection methods and direct comparisons is not advisable.


1994 ◽  
Vol 07 (04) ◽  
pp. 154-157 ◽  
Author(s):  
R. M. McLaughlin ◽  
J. K. Roush ◽  
Dominique Griffon

SummaryThe redistribution of vertical ground reaction forces after surgically induced forelimb lameness was evaluated in five Greyhounds at the walk. Vertical ground reaction forces were measured by force plate analysis before, three days, and seven days after a craniolateral approach to the shoulder was performed unilaterally in each dog.At day # 3, peak vertical force was significantly decreased in the operated forelimbs and in the ipsilateral hindlimbs. Peak vertical force was significantly increased in the contralateral fore- and hindlimbs. The total peak vertical force applied to both forelimbs did not change, nor did the total force applied to both hindlimbs. At day # 7, peak vertical force in each of the four limbs had returned to preoperative levels. Results of this study document the redistribution of ground reaction forces (at the walk) between the four limbs in the dog after an acute, surgically induced forelimb lameness.The redistribution of ground reaction force was evaluated in five Greyhounds before and during forelimb lameness. Lameness was induced by a craniolateral approach to one shoulder in each dog. At day # 3 after surgery, peak vertical force was decreased in the operated forelimbs and ipsilateral hindlimbs. Peak vertical force was increased in the contralateral fore- and hindlimbs. The distribution of ground reaction force in the four limbs returned to preoperative values seven days after surgery.


2017 ◽  
Vol 30 (01) ◽  
pp. 54-58 ◽  
Author(s):  
Gabby Sandberg ◽  
Sarah Robb ◽  
Steven Budsberg ◽  
Nicola Volstad

SummaryObjective: To compare the variability of symmetry indices within and between days when using one and two force plates for data collection.Animals: Seventeen healthy client-owned adult dogs.Methods: Vertical ground reaction force data were collected in a crossover study design, with four collection sessions on two consecutive days, and then two weeks apart (days 1, 2, 15, and 16) using both 1-plate and 2-plate collection methods. Symmetry indices were calculated for limb pairs using two standard equations (SI1 and SI2). Repeated measures analysis was used to compare symmetry indices data between plate systems and days. Significance was set at p <0.05.Results: There were no significant differences between plate systems for SI1 and SI2. There were no significant differences between data collected on different days and no significant interaction effects between variables. Symmetry indices were consistently larger for ground reaction forces calculated from non-consecutive footfalls.Conclusions: The use of two force plate systems will minimize variance caused by trial repetition and paired limb variation. When comparing SI1 to SI2, results were not significantly different. However, there were consistently higher mean values for SI1 compared with SI2 and symmetry indices were consistently larger for 1-plate systems compared to 2-plate systems for both symmetry indices.


2019 ◽  
Vol 126 (5) ◽  
pp. 1315-1325 ◽  
Author(s):  
Andrew B. Udofa ◽  
Kenneth P. Clark ◽  
Laurence J. Ryan ◽  
Peter G. Weyand

Although running shoes alter foot-ground reaction forces, particularly during impact, how they do so is incompletely understood. Here, we hypothesized that footwear effects on running ground reaction force-time patterns can be accurately predicted from the motion of two components of the body’s mass (mb): the contacting lower-limb (m1 = 0.08mb) and the remainder (m2 = 0.92mb). Simultaneous motion and vertical ground reaction force-time data were acquired at 1,000 Hz from eight uninstructed subjects running on a force-instrumented treadmill at 4.0 and 7.0 m/s under four footwear conditions: barefoot, minimal sole, thin sole, and thick sole. Vertical ground reaction force-time patterns were generated from the two-mass model using body mass and footfall-specific measures of contact time, aerial time, and lower-limb impact deceleration. Model force-time patterns generated using the empirical inputs acquired for each footfall matched the measured patterns closely across the four footwear conditions at both protocol speeds ( r2 = 0.96 ± 0.004; root mean squared error  = 0.17 ± 0.01 body-weight units; n = 275 total footfalls). Foot landing angles (θF) were inversely related to footwear thickness; more positive or plantar-flexed landing angles coincided with longer-impact durations and force-time patterns lacking distinct rising-edge force peaks. Our results support three conclusions: 1) running ground reaction force-time patterns across footwear conditions can be accurately predicted using our two-mass, two-impulse model, 2) impact forces, regardless of foot strike mechanics, can be accurately quantified from lower-limb motion and a fixed anatomical mass (0.08mb), and 3) runners maintain similar loading rates (ΔFvertical/Δtime) across footwear conditions by altering foot strike angle to regulate the duration of impact. NEW & NOTEWORTHY Here, we validate a two-mass, two-impulse model of running vertical ground reaction forces across four footwear thickness conditions (barefoot, minimal, thin, thick). Our model allows the impact portion of the impulse to be extracted from measured total ground reaction force-time patterns using motion data from the ankle. The gait adjustments observed across footwear conditions revealed that runners maintained similar loading rates across footwear conditions by altering foot strike angles to regulate the duration of impact.


2015 ◽  
Vol 28 (05) ◽  
pp. 318-322 ◽  
Author(s):  
M. Stejskal ◽  
B. T. Torres ◽  
G. S. Sandberg ◽  
J. A. Sapora ◽  
R. K. Dover ◽  
...  

SummaryObjective: To compare peak vertical force (PVF) and vertical impulse (VI) data collected with one and two force plates during the same collection time period in healthy dogs at a trot.Animals: Seventeen healthy client-owned adult dogs.Methods: Vertical ground reaction force (GRF) data were collected in a crossover study design, with four sessions on two consecutive days, and then two weeks apart (days 1, 2, 15, and 16) using both one and two force plates collection methods. A repeated measures model analysis of variance (ANOVA) was used to test for differences in force plate PVF, VI, and average time per trial (ATT) between days, weeks, and systems (1 plate versus 2 plates). Coefficients of variation for PVF and VI were also calculated separately by forelimbs and hindlimbs, plates, day, and week.Results: The time required to obtain a valid trial was significantly longer using a single force plate when compared with two force plates. Comparing GRF data for all dogs, significant differences in PVF data were found between one and two force plates, however, these differences were diminutive in absolute magnitude, and of unknown clinical importance. Examination of the coefficients of variation for PVF and VI during the different collection periods yielded similar results.Conclusions: Use of two force plates decreased trial repetition and collection time. Vertical GRF data had a similar coefficient of variation with either one or two force plates collection techniques in healthy dogs.


1986 ◽  
Vol 2 (1) ◽  
pp. 41-49 ◽  
Author(s):  
Edward C. Frederick ◽  
John L. Hagy

Nine subjects (6 males, 3 females) ranging in body mass from 90.9 to 45.5 kg ran repeated trials across a force platform while being filmed at 50 fps. The subjects ran five barefooted trials at each of three speeds: 3.35, 3.83, and 4.47 m · s−1. Force data were collected on-line and analyzed for the magnitude and temporal characteristics of the initial impact (Fz1) peak and the active (Fz2) peak of vertical ground reaction force (VGRF). Multiple regression and correlation analysis were used to study the relationship between the magnitudes of these kinetic data and kinematic and anthropometric data taken from the film and from measurements of the subjects. The results support the general conclusion that speed and, indirectly, body mass are significant effectors of the magnitudes of Fz1. In addition, other factors that correlate significantly with Fz1 are reciprocal ponderal index (RPI) and stature; half-stride length, step length, leg length, and vertical hip excursion during a half-stride cycle; and hip offset, contact angle, and dorsiflexion angle at contact. Body mass correlates highly with Fz2 (r = 0.95). Other significant factors correlating with Fz2 are RPI, stature, vertical hip excursion, dorsiflexion angle, hip offset, half-stride length, and step length. These data support earlier findings that speed and the effective mass of the leg at contact are important effectors of the magnitude of Fzl. In addition, the kinematic and anthropometric parameters that contribute significantly to the variability in Fzl and F are generally cross-correlated with body size and/or running speed.


Sign in / Sign up

Export Citation Format

Share Document