Shifting the Current Clinical Perspective: Isolated Eccentric Exercise as an Effective Intervention to Promote the Recovery of Muscle After Injury

2017 ◽  
Vol 26 (2) ◽  
pp. 122-130 ◽  
Author(s):  
Lindsey K. Lepley ◽  
Timothy A. Butterfield

Eccentric exercise is able to mechanically engage muscle, initiating strain-sensing molecules that promote muscle recovery by inducing beneficial adaptations in neural activity and muscle morphology, 2 critical components of muscle function that are negatively altered after injury. However, due to misinterpreted mathematic modeling and in situ and in vitro stretch protocols, a dogma that exposing muscle to eccentric exercise is associated with injury has been perpetuated in the literature. In response, clinicians have been biased toward using concentric exercise postinjury to improve the recovery of muscle function. Unfortunately, this conventional approach to rehabilitation does not restore muscle function, and reinjury rates remain high. Here, the authors present experimental evidence and theoretical support for the idea that isolated eccentric exercise is ideally suited to combat muscle inhibition and muscle strains and is an attractive alternative to concentric exercise.

2007 ◽  
Vol 35 (5) ◽  
pp. 962-965 ◽  
Author(s):  
M. He ◽  
M.J. Taussig

Cell-free transcription and translation provides an open, controllable environment for production of correctly folded, soluble proteins and allows the rapid generation of proteins from DNA without the need for cloning. Thus it is becoming an increasingly attractive alternative to conventional in vivo expression systems, especially when parallel expression of multiple proteins is required. Through novel design and exploitation, powerful cell-free technologies of ribosome display and protein in situ arrays have been developed for in vitro production and isolation of protein-binding molecules from large libraries. These technologies can be combined for rapid detection of protein interactions.


2020 ◽  
Vol 55 (4) ◽  
pp. 336-342
Author(s):  
Lindsey K. Lepley ◽  
Steven M. Davi ◽  
Emily R. Hunt ◽  
Julie P. Burland ◽  
McKenzie S. White ◽  
...  

Context Long-term eccentric exercise is known to promote muscle growth better than concentric exercise, but its acute effect on muscle is not well understood because of misinterpreted modeling and in situ and in vitro stretch protocols. Knowing if the initial bout of eccentric exercise promotes muscle growth and limits damage is critical to understanding the effect of this mode of exercise. Objective To directly evaluate the immediate effects of eccentric and concentric exercises on untrained muscle when fiber strains were physiological and exercise doses were comparable. Design Controlled laboratory study. Setting Laboratory. Patients or Other Participants A total of 40 skeletally mature male Long-Evans rats (age = 16 weeks, mass = 452.1 ± 35.2 g) were randomly assigned to an eccentric exercise (downhill walking, n = 16), concentric exercise (uphill walking, n = 16), or control (no exercise, n = 8) group. Intervention(s) Rats were exposed to a single 15-minute bout of eccentric or concentric exercise on a motorized treadmill and then were euthanized at 6 or 24 hours postexercise. We harvested the vastus lateralis muscle bilaterally. Main Outcome Measure(s) The percentage increase or decrease in protein abundance in exercised animals relative to that in unexercised control animals was evaluated as elevated phosphorylated p70S6k relative to total p70S6k. Fiber damage was quantified using immunoglobulin G permeability staining. One-way analysis of variance and post hoc Tukey tests were performed. Results Rats exposed to eccentric exercise and euthanized at 24 hours had higher percentage response protein synthesis rates than rats exposed to eccentric exercise and euthanized at 6 hours (P = .02) or to concentric exercise and euthanized at 6 (P = .03) or 24 (P = .03) hours. We assessed 9446 fibers for damage and found only 1 fiber was infiltrated (in the concentric exercise group euthanized at 6 hours). Furthermore, no between-groups differences in immunoglobulin G fluorescent intensity were detected (P = .94). Conclusions Incorporating eccentric exercise is a simple, universally available therapeutic intervention for promoting muscle recovery. A single 15-minute dose of eccentric exercise to a novice muscle can better exert an anabolic effect than a comparable dose of concentric exercise, with very limited evidence of fiber damage.


2010 ◽  
Vol 4 (3) ◽  
Author(s):  
Jason P. Carey ◽  
Morgan Gwin ◽  
Andrew Kan ◽  
Roger Toogood ◽  
Barry Finegan

Cricothyrotomy is one of the procedures used to ventilate patients with upper airway blockage. This paper examines the most regularly used and preferred cricothyrotomy devices on the market, suggests critical design specifications for improving cricothyrotomy devices, introduces a new cricothyrotomy device, and performs an engineering evaluation of the device’s critical components. Through a review of literature, manufacturer products, and patents, four principal cricothyrotomy devices currently in clinical use were identified. From the review, the Cook™ Melker device is the preferred method of clinicians but the device has acknowledged problems. A new emergency needle cricothyrotomy device (ENCD) was developed to address all design specifications identified in literature. Engineering, theoretical, and experimental assessments were performed. In situ evaluations of a prototype of the new device using porcine specimens to assess insertion, extraction, and cyclic force capabilities were performed. The device was very successful in its evaluation. Further discussion focuses on these aspects and a comparison of the new device with established devices. The proposed emergency needle cricothyrotomy device performed very well. Further work will be pursued in the future with in-vitro and in-vivo with canine models demonstrates the capabilities of the ENCD.


Author(s):  
J. P. Revel

Movement of individual cells or of cell sheets and complex patterns of folding play a prominent role in the early developmental stages of the embryo. Our understanding of these processes is based on three- dimensional reconstructions laboriously prepared from serial sections, and from autoradiographic and other studies. Many concepts have also evolved from extrapolation of investigations of cell movement carried out in vitro. The scanning electron microscope now allows us to examine some of these events in situ. It is possible to prepare dissections of embryos and even of tissues of adult animals which reveal existing relationships between various structures more readily than used to be possible vithout an SEM.


Author(s):  
D. Reis ◽  
B. Vian ◽  
J. C. Roland

Wall morphogenesis in higher plants is a problem still open to controversy. Until now the possibility of a transmembrane control and the involvement of microtubules were mostly envisaged. Self-assembly processes have been observed in the case of walls of Chlamydomonas and bacteria. Spontaneous gelling interactions between xanthan and galactomannan from Ceratonia have been analyzed very recently. The present work provides indications that some processes of spontaneous aggregation could occur in higher plants during the formation and expansion of cell wall.Observations were performed on hypocotyl of mung bean (Phaseolus aureus) for which growth characteristics and wall composition have been previously defined.In situ, the walls of actively growing cells (primary walls) show an ordered three-dimensional organization (fig. 1). The wall is typically polylamellate with multifibrillar layers alternately transverse and longitudinal. Between these layers intermediate strata exist in which the orientation of microfibrils progressively rotates. Thus a progressive change in the morphogenetic activity occurs.


Author(s):  
C. Jennermann ◽  
S. A. Kliewer ◽  
D. C. Morris

Peroxisome proliferator-activated receptor gamma (PPARg) is a member of the nuclear hormone receptor superfamily and has been shown in vitro to regulate genes involved in lipid metabolism and adipocyte differentiation. By Northern analysis, we and other researchers have shown that expression of this receptor predominates in adipose tissue in adult mice, and appears first in whole-embryo mRNA at 13.5 days postconception. In situ hybridization was used to find out in which developing tissues PPARg is specifically expressed.Digoxigenin-labeled riboprobes were generated using the Genius™ 4 RNA Labeling Kit from Boehringer Mannheim. Full length PPAR gamma, obtained by PCR from mouse liver cDNA, was inserted into pBluescript SK and used as template for the transcription reaction. Probes of average size 200 base pairs were made by partial alkaline hydrolysis of the full length transcripts. The in situ hybridization assays were performed as described previously with some modifications. Frozen sections (10 μm thick) of day 18 mouse embryos were cut, fixed with 4% paraformaldehyde and acetylated with 0.25% acetic anhydride in 1.0M triethanolamine buffer. The sections were incubated for 2 hours at room temperature in pre-hybridization buffer, and were then hybridized with a probe concentration of 200μg per ml at 70° C, overnight in a humidified chamber. Following stringent washes in SSC buffers, the immunological detection steps were performed at room temperature. The alkaline phosphatase labeled, anti-digoxigenin antibody and detection buffers were purchased from Boehringer Mannheim. The sections were treated with a blocking buffer for one hour and incubated with antibody solution at a 1:5000 dilution for 2 hours, both at room temperature. Colored precipitate was formed by exposure to the alkaline phosphatase substrate nitrobluetetrazoliumchloride/ bromo-chloroindlylphosphate.


2018 ◽  
Vol 12 (7-8) ◽  
pp. 38-45
Author(s):  
A. N. EFREMOV ◽  
N. V. PLIKINA ◽  
T. ABELI

Rare species are most vulnerable to man-made impacts, due to their biological characteristics or natural resource management. As a rule, the economic impact is associated with the destruction and damage of individual organisms, the destruction or alienation of habitats. Unfortunately, the conservation of habitat integrity is an important protection strategy, which is not always achievable in the implementation of industrial and infrastructural projects. The aim of the publication is to summarize the experience in the field of protection of rare species in the natural habitat (in situ), to evaluate and analyze the possibility of using existing methods in design and survey activities. In this regard, the main methodological approaches to the protection of rare species in the natural habitat (in situ) during the proposed economic activity were reflected. The algorithm suggested by the authors for implementing the in situ project should include a preparatory stage (initial data collection, preliminary risk assessments, technology development, obtaining permitting documentation), the main stage, the content of which is determined by the selected technology and a long monitoring stage, which makes it possible to assess the effectiveness of the taken measures. Among the main risks of in situ technology implementation, the following can be noted: the limited resources of the population that do not allow for the implementation of the procedure without prior reproduction of individuals in situ (in vitro); limited knowledge of the biology of the species; the possibility of invasion; the possibility of crossing for closely related species that сo-exist in the same habitat; social risks and consequences, target species or population may be important for the local population; financial risks during the recovery of the population. The available experience makes it possible to consider the approach to the conservation of rare species in situ as the best available technology that contributes to reducing negative environmental risks.


Sign in / Sign up

Export Citation Format

Share Document