Electromyographic Analysis of Hip and Trunk Muscle Activity During Side Bridge Exercises in Subjects With Gluteus Medius Weakness

2020 ◽  
pp. 1-6
Author(s):  
Kyung-eun Lee ◽  
Seung-min Baik ◽  
Chung-hwi Yi ◽  
Oh-yun Kwon ◽  
Heon-seock Cynn

Context: Side bridge exercises strengthen the hip, trunk, and abdominal muscles and challenge the trunk muscles without the high lumbar compression associated with trunk extension or curls. Previous research using electromyography (EMG) reports that performance of the side bridge exercise highly activates the gluteus medius (Gmed). However, to the best of our knowledge, no previous research has investigated EMG amplitude in the hip and trunk muscles during side bridge exercise in subjects with Gmed weakness. Objective: The purpose of this study was to examine the EMG activity of the hip and trunk muscles during 3 variations of the side bridge exercise (side bridge, side bridge with knee flexion, and side bridge with knee flexion and hip abduction of the top leg) in subjects with Gmed weakness. Design: Repeated-measures experimental design. Setting: Research laboratory. Patients: Thirty subjects (15 females and 15 males) with Gmed weakness participated in this study. Intervention: Each subject performed 3 variations of the side bridge exercise in random order. Main Outcome Measures: Surface EMG was used to measure the muscle activities of the rectus abdominis, external oblique, longissimus thoracis, multifidus, Gmed, gluteus maximus, and tensor fasciae latae (TFL), and Gmed/TFL muscle activity ratio during 3 variations of the side bridge exercise. Results: There were significant differences in Gmed (F2,56 = 110.054, P < .001), gluteus maximus (F2,56 = 36.416, P < .001), and TFL (F2,56 = 108.342, P < .001) muscles among the 3 side bridge exercises. There were significant differences in the Gmed/TFL muscle ratio (F2,56 = 20.738, P < .001). Conclusion: Among 3 side bridge exercises, the side bridge with knee flexion may be effective for the individuals with Gmed weakness among 3 side bridge exercises to strengthen the gluteal muscles, considering the difficulty of the exercise and relative contribution of Gmed and TFL.

Author(s):  
Kazuma Uebayashi ◽  
Yu Okubo ◽  
Takuya Nishikawa ◽  
Taro Morikami ◽  
Jindo Hatanaka

BACKGROUND: Given the characteristics of the superficial trunk muscles that cross the chest and pelvis, their excessive contraction might limit chest mobility. OBJECTIVE: To examine the immediate effects of two types of trunk muscle exercises on chest mobility and trunk muscle activities. METHODS: Fourteen healthy men (age: 21.1 ± 1.0 years, height: 172.7 ± 5.6 cm, weight: 61.0 ± 7.1 kg, body mass index: 20.4 ± 1.7 kg/m2; mean ± SD) randomly performed trunk side flexion and draw-in exercises using a cross-over design. The chest kinematic data and trunk muscle activities were measured before and after each intervention during the following tasks: maximum inspiration/expiration and maximum pelvic anterior/posterior tilt while standing. Two-way repeated measures analysis of variance was used for statistical analysis (P< 0.05). RESULTS: After the side flexion, upper and lower chest mobility significantly decreased, and superficial trunk muscle activity significantly increased during the maximum pelvic anterior tilt (P< 0.05). Additionally, after the draw-in, upper chest mobility significantly increased during the maximum pelvic anterior tilt (P< 0.05). CONCLUSIONS: Increased activity of the superficial abdominal muscles might limit chest mobility during maximum pelvic anterior tilt. Conversely, the facilitation of deep trunk muscles might increase upper chest mobility during the maximum pelvic anterior tilt.


2012 ◽  
Vol 47 (1) ◽  
pp. 15-23 ◽  
Author(s):  
Joseph M. McBeth ◽  
Jennifer E. Earl-Boehm ◽  
Stephen C. Cobb ◽  
Wendy E. Huddleston

Context: Lower extremity overuse injuries are associated with gluteus medius (GMed) weakness. Understanding the activation of muscles about the hip during strengthening exercises is important for rehabilitation. Objective: To compare the electromyographic activity produced by the gluteus medius (GMed), tensor fascia latae (TFL), anterior hip flexors (AHF), and gluteus maximus (GMax) during 3 hip-strengthening exercises: hip abduction (ABD), hip abduction with external rotation (ABD-ER), and clamshell (CLAM) exercises. Design: Controlled laboratory study. Setting: Laboratory. Patients or Other Participants: Twenty healthy runners (9 men, 11 women; age = 25.45 ± 5.80 years, height = 1.71 ± 0.07 m, mass = 64.43 ± 7.75 kg) participated. Intervention(s): A weight equal to 5% body mass was affixed to the ankle for the ABD and ABD-ER exercises, and an equivalent load was affixed for the CLAM exercise. A pressure biofeedback unit was placed beneath the trunk to provide positional feedback. Main Outcome Measure(s): Surface electromyography (root mean square normalized to maximal voluntary isometric contraction) was recorded over the GMed, TFL, AHF, and GMax. Results: Three 1-way, repeated-measures analyses of variance indicated differences for muscle activity among the ABD (F3,57 = 25.903, P&lt;.001), ABD-ER (F3,57 = 10.458, P&lt;.001), and CLAM (F3,57 = 4.640, P=.006) exercises. For the ABD exercise, the GMed (70.1 ± 29.9%), TFL (54.3 ± 19.1%), and AHF (28.2 ± 21.5%) differed in muscle activity. The GMax (25.3 ± 24.6%) was less active than the GMed and TFL but was not different from the AHF. For the ABD-ER exercise, the TFL (70.9 ± 17.2%) was more active than the AHF (54.3 ± 24.8%), GMed (53.03 ± 28.4%), and GMax (31.7 ± 24.1 %). For the CLAM exercise, the AHF (54.2 ± 25.2%) was more active than the TFL (34.4 ± 20.1%) and GMed (32.6 ± 16.9%) but was not different from the GMax (34.2 ± 24.8%). Conclusions: The ABD exercise is preferred if targeted activation of the GMed is a goal. Activation of the other muscles in the ABD-ER and CLAM exercises exceeded that of GMed, which might indicate the exercises are less appropriate when the primary goal is the GMed activation and strengthening.


2017 ◽  
Vol 73 (1) ◽  
Author(s):  
Saviour Adjenti ◽  
Graham Louw ◽  
Jennifer Jelsma ◽  
Marianne Unger

Background: Inadequate knowledge in the recruitment patterns of abdominal muscles in individuals with spastic-type cerebral palsy (STCP).Objectives: To determine whether there is any difference between the neuromuscular activity (activation pattern) of the abdominal muscles in children with STCP and those of their typically developing (TD) peers.Method: The NORAXAN® electromyography (EMG) was used to monitor the neuromuscular activity in abdominal muscles of individuals with STCP (n = 63), and the results were compared with the findings from age-matched TD individuals (n = 82).Results: EMG frequencies were recorded during rest and during active states and compared using repeated measures ANOVA. Spearman’s rank order correlation was used to explore relationships between age, body mass index and abdominal muscle activity. With the exception of the rectus abdominis (RA) muscle, the pattern of neuromuscular activity in children with STCP differs significantly from that of their TD peers. Three of the muscles – external oblique abdominis (EO), internal oblique abdominis (IO) and RA – in both groups showed significant changes (p < 0.001) in the frequency of EMG activity between the resting and active states. An elevated EMG activity at rest in the EO and IO was recorded in the STCP group, whereas the RA during resting and active stages showed similar results to TD individuals.Conclusion: The findings from this study suggest that the RA could be targeted during rehabilitation regimens; however, the force generated by this muscle may not be sufficient for the maintenance of trunk stability without optimal support from the EO and IO muscles.


Author(s):  
Anne Khuu ◽  
Kari L. Loverro ◽  
Cara L. Lewis

ABSTRACT Context: The single leg squat (SLS) is appropriate for targeting activation, strengthening, and/or neuromuscular retraining of the gluteus maximus, gluteus medius, and quadriceps. However, the effect of different non-stance leg positions on muscle activity has not been fully evaluated. Objective: To compare the muscle activity of selected stance leg hip muscles during the SLS with 3 non-stance leg positions: in front, in the middle, and in back. Design: Controlled laboratory study. Setting: Biomechanics laboratory. Participants: Seventeen healthy adults. Main Outcome Measure(s): Surface EMG data of the gluteus maximus, gluteus medius, lateral hamstrings, medial hamstrings, rectus femoris, and TFL as well as kinetic data of the hip and knee were collected while participants performed the 3 SLS tasks. Mean muscle activation levels during the descent phase and ascent phase for the selected hip muscles were compared for the 3 tasks. Hip and knee kinetics in all 3 planes were also compared for the 3 tasks. Each variable of interest was analyzed using a separate linear regression model with a generalized estimating equations correction. Results: Muscle activation levels of the gluteus maximus, gluteus medius, medial hamstrings, rectus femoris, and TFL on the stance leg during descent, and the medial hamstrings and TFL during ascent were significantly different between SLS tasks. The greatest number of differences occurred between SLS-Front and SLS-Back. During descent, gluteal muscle activity was greater in SLS-Front and SLS-Middle than in SLS-Back. For both phases, TFL activity was greater during SLS-Front than both SLS-Middle and SLS-Back. Kinetic differences at the hip and knee between SLS tasks were also observed. Conclusion: The 3 SLS tasks have different muscle activation and kinetic profiles. Clinician and researchers can vary non-stance leg position during the SLS to manipulate muscle activation levels and tailor the exercise to assist with goals at different stages of rehabilitation.


2021 ◽  
Vol 6 (4) ◽  
pp. 247301142110600
Author(s):  
Cuyler Dewar ◽  
Terry L. Grindstaff ◽  
Brooke Farmer ◽  
Morgan Sainsbury ◽  
Sam Gay ◽  
...  

Background: Foot and ankle injuries frequently require a period of nonweightbearing, resulting in muscle atrophy. Our previous study compared a hands-free single crutch (HFSC) to standard axillary crutches and found increased muscle recruitment and intensity while using the HFSC. Knee scooters are another commonly prescribed nonweightbearing device. The purpose of this study is to examine the electromyographic (EMG) differences between an HFSC and knee scooter, in conjunction with device preference and perceived exertion. Methods: A randomized crossover study was performed using 30 noninjured young adults. Wireless surface EMG electrodes were placed on the belly of the rectus femoris (RF), vastus lateralis (VL), lateral gastrocnemius (LG), and gluteus maximus (GM). Participants then ambulated along a 20-m walking area while 15 seconds of the gait cycle was recorded across 3 conditions: walking with a knee scooter, an HFSC, and with no assistive device. Mean muscle activity and peak EMG activity were recorded for each ambulatory modality. Immediately following testing, patient exertion and device preference was recorded. Results: The RF, LG, and GM showed increased peak EMG activity percentage, and the LG showed increased mean muscle activity while using the HFSC compared with the knee scooter. When comparing the knee scooter and HFSC to walking, both showed increased muscle activity in the RF, VL, and LG but no difference in the GM. There was no statistical difference in participant preference, whereas the HFSC had a statistically significant higher perceived exertion than the knee scooter ( P < .001). Conclusion: In this group of young, healthy noninjured volunteers, the HFSC demonstrated increased peak EMG activity in most muscle groups tested compared with the knee scooter. Level of Evidence: Level II, prospective comparative study.


2020 ◽  
Vol 29 (8) ◽  
pp. 1075-1085
Author(s):  
Neal R. Glaviano ◽  
Ashley N. Marshall ◽  
L. Colby Mangum ◽  
Joseph M. Hart ◽  
Jay Hertel ◽  
...  

Context: Patellofemoral pain (PFP) is a challenging condition, with altered kinematics and muscle activity as 2 common impairments. Single applications of patterned electrical neuromuscular stimulation (PENS) have improved both kinematics and muscle activity in females with PFP; however, the use of PENS in conjunction with a rehabilitation program has not been evaluated. Objective: To determine the effects of a 4-week rehabilitation program with PENS on lower-extremity biomechanics and electromyography (EMG) during a single-leg squat (SLS) and a step-down task (SDT) in individuals with PFP. Study Design: Double-blinded randomized controlled trial. Setting: Laboratory. Patients of Other Participants: Sixteen females with PFP (age 23.3 [4.9] y, mass 66.3 [13.5] kg, height 166.1 [5.9] cm). Intervention: Patients completed a 4-week supervised rehabilitation program with or without PENS. Main Outcome Measures: Curve analyses for lower-extremity kinematics and EMG activity (gluteus maximus, gluteus medius, vastus medialis oblique, vastus lateralis, biceps femoris, and adductor longus) were constructed by plotting group means and 90% confidence intervals throughout 100% of each task, before and after the rehabilitation program. Mean differences (MDs) and SDs were calculated where statistical differences were identified. Results: No differences at baseline in lower-extremity kinematics or EMG were found between groups. Following rehabilitation, the PENS group had significant reduction in hip adduction between 29% and 47% of the SLS (MD = 4.62° [3.85°]) and between 43% and 69% of the SDT (MD = 6.55° [0.77°]). Throughout the entire SDT, there was a decrease in trunk flexion in the PENS group (MD = 10.91° [1.73°]). A significant decrease in gluteus medius activity was seen during both the SLS (MD = 2.77 [3.58]) and SDT (MD = 4.36 [5.38]), and gluteus maximus during the SLS (MD = 1.49 [1.46]). No differences were seen in the Sham group lower-extremity kinematics for either task. Conclusion: Rehabilitation with PENS improved kinematics in both tasks and decreased EMG activity. This suggests that rehabilitation with PENS may improve muscle function during functional tasks.


2002 ◽  
Vol 11 (3) ◽  
pp. 179-188 ◽  
Author(s):  
Randy J. Schmitz ◽  
Bryan L. Riemann ◽  
Timothy Thompson

Objective:To determine whether gluteus medius (GM) activity increases in response to isometric closed-chain external hip rotation.Design:Subjects performed single-leg stances in 3 different conditions: 0° knee flexion, 0° hip flexion (C1); 0° knee flexion, 20° hip flexion (C2); and knee flexed 20–30°, 20° hip flexion (C3). Posteriorly directed forces of 8.9 N (F1), 17.8 N (F2), and 26.7 N (F3) were applied at the lateral pelvis of the nonstance side during each condition.Subjects:20 college students.Measurements:Surface EMG RMS amplitude from the GM and kinematic data from the trunk, hip, and knee.Results:Statistical analyses revealed a significant Condition 3 Force interaction and significant increases of EMG activity from C1F1 and C1F2 to C1F3 and from C3F1 to C3F2 and C3F3. F2 and F3 of C2 were significantly less than F2 and F3 of both C1 and C3.Conclusions:GM activity increases in response to isometric, closed-chain, external hip-rotation forces, and forward movement of the upper body with respect to the base of support decreases GM activity.


Author(s):  
Sang-Yeol Lee ◽  
Se-Yeon Park

BACKGROUND: Recent clinical studies have revealed the advantages of using suspension devices. Although the supine, lateral, and forward leaning bridge exercises are low-intensity exercises with suspension devices, there is a lack of studies directly comparing exercise progression by measuring muscular activity and subjective difficulty. OBJECTIVE: To identify how the variations in the bridge exercise affects trunk muscle activity, the present study investigated changes in neuromuscular activation during low-intensity bridge exercises. We furthermore explored whether the height of the suspension point affects muscle activation and subjective difficulty. METHODS: Nineteen asymptomatic male participants were included. Three bridge exercise positions, supine bridge (SB), lateral bridge (LB), forward leaning (FL), and two exercise angles (15 and 30 degrees) were administered, thereby comparing six bridge exercise conditions with suspension devices. Surface electromyography and subjective difficulty data were collected. RESULTS: The rectus abdominis activity was significantly higher with the LB and FL exercises compared with the SB exercise (p< 0.05). The erector spinae muscle activity was significantly higher with the SB and LB exercises, compared with the FL exercise (p< 0.05). The LB exercise significantly increased the internal oblique muscle activity, compared with other exercise variations (p< 0.05). The inclination angle of the exercise only affected the internal oblique muscle and subjective difficulty, which were significantly higher at 30 degrees compared with 15 degrees (p< 0.05). CONCLUSIONS: Relatively higher inclination angle was not effective in overall activation of the trunk muscles; however, different bridge-type exercises could selectively activate the trunk muscles. The LB and SB exercises could be good options for stimulating the internal oblique abdominis, and the erector spinae muscle, while the FL exercise could minimize the erector spinae activity and activate the abdominal muscles.


2014 ◽  
Vol 8 (1) ◽  
Author(s):  
Joao A. C. Barros ◽  
Llanel Florendo ◽  
Yvonne Le

The few studies that attempted to increase jump height in figure skaters (Haguenauer et al., 2005, Law & Ste-Marie, 2005) have failed to do so. These studies did not focus on increasing knee flexion, a critical factor for jump height (Moran & Wallace, 2007, Vanezis & Lees, 2005). Auditory biofeedback has been shown to modify posture, balance and cycling performance (Dozza et al., 2011; Nicolai et al., 2010; Liu & Jensen, 2009) and could potentially be used to increase knee flexion in figure skaters. To investigate the effects of auditory biofeedback on the performance of Lutz jumps. Thirteen intermediate level female adolescence figure skaters performed 6 off-ice Lutz jumps under each of 2 conditions: 1) WITH auditory biofeedback; 2) and WITHOUT auditory biofeedback. Auditory biofeedback was provided via EMG Retrainer. Separate repeated measures ANOVAs were conducted for time in the air, knee flexion and EMG activity. Differences between conditions for time in the air (p = .012) and knee flexion (p = .049) were identified. Auditory biofeedback increased knee flexion and decreased jump height. In this case, auditory biofeedback might have directed performers attention to an internal cue disrupting performance (Wulf, 2007).


2019 ◽  
Vol 28 (7) ◽  
pp. 682-691 ◽  
Author(s):  
Kunal Bhanot ◽  
Navpreet Kaur ◽  
Lori Thein Brody ◽  
Jennifer Bridges ◽  
David C. Berry ◽  
...  

Context:Dynamic balance is a measure of core stability. Deficits in the dynamic balance have been related to injuries in the athletic populations. The Star Excursion Balance Test (SEBT) is suggested to measure and improve dynamic balance when used as a rehabilitative tool.Objective:To determine the electromyographic activity of the hip and the trunk muscles during the SEBT.Design:Descriptive.Setting:University campus.Participants:Twenty-two healthy adults (11 males and 11 females; 23.3 [3.8] y, 170.3 [7.6] cm, 67.8 [10.3] kg, and 15.1% [5.0%] body fat).Intervention:Surface electromyographic data were collected on 22 healthy adults of the erector spinae, external oblique, and rectus abdominis bilaterally, and gluteus medius and gluteus maximus muscle of the stance leg. A 2-way repeated measures analysis of variance was used to determine the interaction between the percentage maximal voluntary isometric contraction (%MVIC) and the reach directions. The %MVIC for each muscle was compared across the 8 reach directions using the Sidak post hoc test withαat .05.Main Outcome Measures:%MVIC.Results:Significant differences were observed for all the 8 muscles. Highest electromyographic activity was found for the tested muscles in the following reach directions—ipsilateral external oblique (44.5% [38.4%]): anterolateral; contralateral external oblique (52.3% [40.8%]): medial; ipsilateral rectus abdominis (8% [6.6%]): anterior; contralateral rectus abdominis (8% [5.3%]): anteromedial; ipsilateral erector spinae (46.4% [20.2%]): posterolateral; contralateral erector spinae (33.5% [11.3%]): posteromedial; gluteus maximus (27.4% [11.7%]): posterior; and gluteus medius (54.6% [26.1%]): medial direction.Conclusions:Trunk and hip muscle activation was direction dependent during the SEBT. This information can be used during rehabilitation of the hip and the trunk muscles.


Sign in / Sign up

Export Citation Format

Share Document