Age- and Sex-Related Differences in Optimal Peak Power

2002 ◽  
Vol 14 (2) ◽  
pp. 202-212 ◽  
Author(s):  
Amândio M.C. Santos ◽  
Joanne R. Welsman ◽  
Mark B.A. De Ste Croix ◽  
Neil Armstrong

Age- and sex-related differences in optimal peak power (PPopt) and associated measures determined using a force-velocity (F-V) cycling test were examined in pre teenage, teenage and adult males and females. Absolute PPopt increased significantly with age in both males and females. With body mass controlled for using allometric scaling significant age related increases remained, an effect masked in the females when PPopt was expressed as W • kg−1. Sex differences in PPopt were minimal in the preteens but males demonstrated higher PPopt than females in both teenage and adult groups. These patterns of change with age and sex broadly reflect those obtained for Wingate Anaerobic Test determined PP but the use of a single non-optimized braking force underestimates the magnitude of any differences observed.

2011 ◽  
Vol 23 (3) ◽  
pp. 303-310 ◽  
Author(s):  
Joyce Obeid ◽  
Maggie J. Larché ◽  
Brian W. Timmons

The Wingate Anaerobic Test (WAnT) can assess muscle function in youth with juvenile idiopathic arthritis (JIA). Our objective was to compare peak power (PP) and mean power (MP) when the WAnT is performed with a standard vs. an optimized braking force. Eight patients with JIA between the ages of 8 and 18 participated in two sessions. Optimal braking force was determined with a series of 15-s force-velocity tests performed against braking forces ranging from 3.5 to 8.5% of body weight. Participants then performed two randomized WAnTs against the standard (4.5%) and optimal braking forces. PP tended to be greater in the optimized vs. standard WAnT (12.5 ± 2.6 vs. 10.8 ± 1.0 W/kg, respectively; p =.07). No differences were observed for MP (standard: 6.2 ± 0.9 vs. optimized: 6.2 ± 1.1 W/kg; p = .9). Optimization of the WAnT tended to increase PP by 10–28% in youth with JIA.


1993 ◽  
Vol 5 (1) ◽  
pp. 72-77
Author(s):  
Sharon A. Evans ◽  
Joan M. Eckerson ◽  
Terry J. Housh ◽  
Glen O. Johnson

This investigation examined age related differences in the muscular power of the arms in high school wrestlers. Seventy-five volunteers (M age ±SD = 16.3 ±1.2 yrs) were stratified into four age groups (≤15.00; 15.01−16.00; 16.01−17.00, and ≥17.01 yrs) corresponding approximately to the freshman through senior years of high school. Mean power (MP) and peak power (PP) were measured using an arm crank Wingate Anaerobic Test, and body composition was assessed via underwater weighing. The results indicated significant (p<0.05) group differences for absolute MP and PP as well as for relative MP and PP (covaried for body weight). No significant differences were found when MP and PP were adjusted for fat-free weight (FFW). The results suggested that the age related increases in muscular power of the arms were a function of increases in FFW across age.


2005 ◽  
Vol 99 (2) ◽  
pp. 499-504 ◽  
Author(s):  
Ralph Beneke ◽  
Matthias Hütler ◽  
Marcus Jung ◽  
Renate M. Leithäuser

Whether age-related differences in blood lactate concentrations (BLC) reflect specific BLC kinetics was analyzed in 15 prepubescent boys (age 12.0 ± 0.6 yr, height 1.54 ± 0.06 m, body mass 40.0 ± 5.2 kg), 12 adolescents (16.3 ± 0.7 yr, 1.83 ± 0.07 m, 68.2 ± 7.5 kg), and 12 adults (27.2 ± 4.5 yr, 1.83 ± 0.06 m, 81.6 ± 6.9 kg) by use of a biexponential four-parameter kinetics model under Wingate Anaerobic Test conditions. The model predicts the lactate generated in the extravasal compartment (A), invasion ( k1), and evasion ( k2) of lactate into and out of the blood compartment, the BLC maximum (BLCmax), and corresponding time (TBLCmax). BLCmax and TBLCmax were lower ( P < 0.05) in boys (BLCmax 10.2 ± 1.3 mmol/l, TBLCmax 4.1 ± 0.4 min) than in adolescents (12.7 ± 1.0 mmol/l, 5.5 ± 0.7 min) and adults (13.7 ± 1.4 mmol/l, 5.7 ± 1.1 min). No differences were found in A related to the muscle mass (AMM) and k1 between boys (AMM: 22.8 ± 2.7 mmol/l, k1: 0.865 ± 0.115 min−1), adolescents (22.7 ± 1.3 mmol/l, 0.692 ± 0.221 min−1), and adults (24.7 ± 2.8 mmol/l, 0.687 ± 0.287 min−1). The k2 was higher ( P < 0.01) in boys (2.87 10−2 ± 0.75 10−2 min−1) than in adolescents (2.03 × 10−2 ± 0.89 × 10−2 min−1) and adults (1.99 × 10−2 ± 0.93 × 10−2 min−1). Age-related differences in the BLC kinetics are unlikely to reflect differences in muscular lactate or lactate invasion but partly faster elimination out of the blood compartment.


Author(s):  
Mingxing Gong ◽  
Xueying Li ◽  
Anqi Zheng ◽  
Hongxu Xu ◽  
Shi Xie ◽  
...  

1984 ◽  
Vol 30 (8) ◽  
pp. 1380-1382 ◽  
Author(s):  
P Rosenthal ◽  
M Pincus ◽  
D Fink

Abstract The relation between age and sex and the concentration of bilirubin in serum was evaluated in 6740 men and 11 215 women, ages 13 to 96 years. Mean serum bilirubin concentrations in the men significantly exceeded values in the women over all age groups examined. Further, mean serum bilirubin concentrations were greatest both in males and females in the 19-24 years age group and then declined to former values, which persisted throughout life. Pearson correlation coefficients for bilirubin with liver function indices (albumin and total protein) and with hemoglobin were low in all ages and in both sexes, suggesting that bilirubin concentrations do not correlate with those liver functions not directly concerned with bile pigment processing.


2009 ◽  
Vol 23 (9) ◽  
pp. 2598-2604 ◽  
Author(s):  
Michael F Zupan ◽  
Alan W Arata ◽  
Letitia H Dawson ◽  
Alfred L Wile ◽  
Tamara L Payn ◽  
...  

2005 ◽  
Vol 100 (3) ◽  
pp. 607-614 ◽  
Author(s):  
Athanasios Kasabalis ◽  
Helen Douda ◽  
Savvas P. Tokmakidis

The aim of the present study was to evaluate the anaerobic power of elite male volleyball players, using the Wingate Anaerobic Test to examine the relationship between anaerobic power and jumping performance. Athletes ( n = 56) and Nonathletes ( n = 53) were divided into three age groups: Adults (18–25 yr.), Juniors (15–16 yr.), and Youth (10–11 yr.). Measurements of height, body mass, vertical jump and Wingate scores indicated higher values for athletes. The specific training effects of anaerobic power were more pronounced at the age of 10–11 years than for Nonathletes. A significant correlation coefficient between peak power and vertical jump was found for Athletes ( r = .86) and for the total group ( r = .82). These results indicated that vertical jump may predict the maximal anaerobic power and could be used by coaches as a practical and easy-to-apply field screening test for evaluation in volleyball training.


2007 ◽  
Vol 17 (2) ◽  
pp. 140-151 ◽  
Author(s):  
Andrea D. Marjerrison ◽  
Jonah D. Lee ◽  
Anthony D. Mahon

This study examined the effect of pre exercise carbohydrate (CHO) feeding on performance on a Wingate anaerobic test (WAnT) in 11 boys (10.2 ± 1.3 y old). Four WAnTs with 2 min recovery were performed 30 min after consuming a CHO (1 g CHO/kg) or placebo drink. Peak power (PP) and mean power (MP) were similar between trials. PP ranged from 241.1 ± 82.2 to 223.1 ± 57.9 W with carbohydrate and from 238.2 ± 76.1 to 223.4 ± 52.3 W with placebo. MP ranged from 176.3 ± 58.4 to 151.1 ± 37.5 W with carbohydrate versus 178.0 ± 45.8 to 159.1 ± 32.7 W with placebo. Pre exercise glucose was significantly higher in CHO versus placebo (7.0 ± 1.0 vs. 5.5 ± 0.5 mmol/L), but post exercise values were not different. Blood lactate was similar between trials but increased over time. This study found that the ingestion of a CHO solution before exercise did not influence power output during repeated performances of the WAnT.


Author(s):  
João Gabriel Silveira-Rodrigues ◽  
André Maia-Lima ◽  
Pedro Augusto Santos Almeida ◽  
Bárbara Marielle Silva França ◽  
Bruno Teobaldo Campos ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document