scholarly journals Influence of Training Status and Maturity on Pulmonary O2 Uptake Recovery Kinetics Following Cycle and Upper Body Exercise in Girls

2012 ◽  
Vol 24 (2) ◽  
pp. 246-261 ◽  
Author(s):  
Melitta A. McNarry ◽  
Joanne R. Welsman ◽  
Andrew M. Jones

The influence of training status on pulmonary VO2 recovery kinetics, and its interaction with maturity, has not been investigated in young girls. Sixteen prepubertal (Pre: trained (T, 11.4 ± 0.7 years), 8 untrained (UT, 11.5 ± 0.6 years)) and 8 pubertal (Pub: 8T, 14.2 ± 0.7 years; 8 UT, 14.5 ± 1.3 years) girls completed repeat transitions from heavy intensity exercise to a baseline of unloaded exercise, on both an upper and lower body ergometer. The VO2 recovery time constant was significantly shorter in the trained prepubertal and pubertal girls during both cycle (Pre: T, 26 ± 4 vs. UT, 32 ± 6; Pub: T, 28 ± 2 vs. UT, 35 ± 7 s; both p < .05) and upper body exercise (Pre: T, 26 ± 4 vs. UT, 35 ± 6; Pub: T, 30 ± 4 vs. UT, 42 ± 3 s; both p < .05). No interaction was evident between training status and maturity. These results demonstrate the sensitivity of VO2 recovery kinetics to training in young girls and challenge the notion of a “maturational threshold” in the influence of training status on the physiological responses to exercise and recovery.

2011 ◽  
Vol 110 (2) ◽  
pp. 375-381 ◽  
Author(s):  
Melitta A. McNarry ◽  
Joanne R. Welsman ◽  
Andrew M. Jones

It has been suggested that the potential for training to alter the physiological responses to exercise in children is related to a “maturational threshold”. To address this, we investigated the interaction of swim-training status and maturity on cardiovascular and metabolic responses to lower and upper body exercise. Twenty-one prepubertal [Pre: 11 trained (T), 10 untrained (UT)], 30 pubertal (Pub: 14 T, 16 UT), and 18 postpubertal (Post: 8 T, 10 UT) girls completed ramp incremental exercise on a cycle and an upper body ergometer. In addition to pulmonary gas exchange measurements, stroke volume and cardiac output were estimated by thoracic bioelectrical impedance, and muscle oxygenation status was assessed using near-infrared spectroscopy. All T girls had a higher peak O2 uptake during cycle (Pre: T 49 ± 5 vs. UT 40 ± 4; Pub: T 46 ± 5 vs. UT 36 ± 4; Post: T 48 ± 5 vs. UT 39 ± 8 ml·kg−1·min−1; all P < 0.05) and upper body exercise (Pre: T 37 ± 6 vs. UT 32 ± 5; Pub: T 36 ± 5 vs. UT 28 ± 5; Post: T 39 ± 3 vs. UT 28 ± 7 ml·kg−1·min−1; all P < 0.05). T girls also had a higher peak cardiac output during both modalities, and this reached significance in Pub (cycle: T 21 ± 3 vs. UT 18 ± 3; upper body: T 20 ± 4 vs. UT 15 ± 4 l/min; all P < 0.05) and Post girls (cycle: T 21 ± 4 vs. UT 17 ± 2; upper body: T 22 ± 3 vs. UT 18 ± 2 l/min; all P < 0.05). None of the measured pulmonary, cardiovascular, or metabolic parameters interacted with maturity, and the magnitude of the difference between T and UT girls was similar, irrespective of maturity stage. These results challenge the notion that differences in training status in young people are only evident once a maturational threshold has been exceeded.


2011 ◽  
Vol 36 (3) ◽  
pp. 344-352 ◽  
Author(s):  
Melitta A. McNarry ◽  
Joanne R. Welsman ◽  
Andrew M. Jones

A maturational threshold has been suggested to be present in young peoples’ responses to exercise, with significant influences of training status evidenced only above this threshold. The presence of such a threshold has not been investigated for short-term, high-intensity exercise. To address this, we investigated the relationship between swim-training status and maturity on the power output, pulmonary gas exchange, and metabolic responses to an upper- and lower-body Wingate anaerobic test (WAnT). Girls at 3 stages of maturity participated:, prepubertal (Pre: 8 trained (T), 10 untrained (UT)), pubertal (Pub: 9 T, 15 UT), and postpubertal (Post: 8 T, 10 UT). At all maturity stages, T exhibited higher peak power (PP) and mean power (MP) during upper-body exercise (PP: Pre, T, 163 ± 20 vs. UT, 124 ± 29; Pub, T, 230 ± 42 vs. UT, 173 ± 41; Post, T, 245 ± 41 vs. UT, 190 ± 40 W; MP: Pre, T, 130 ± 23 vs. UT, 85 ± 26; Pub, T, 184 ± 37 vs. UT, 123 ± 38; Post, T, 200 ± 30 vs. UT, 150 ± 15 W; all p < 0.05) but not lower-body exercise, whilst the fatigue index was significantly lower in T for both exercise modalities. Irrespective of maturity, the oxidative contribution, calculated by the area under the oxygen uptake response profile, was not influenced by training status. No interaction was evident between training status and maturity, with similar magnitudes of difference between T and UT at all 3 maturity stages. These results suggest that there is no maturational threshold which must be surpassed for significant influences of training status to be manifest in the “anaerobic” exercise performance of young girls.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Heidi E. Hintsala ◽  
Rasmus I. P. Valtonen ◽  
Antti Kiviniemi ◽  
Craig Crandall ◽  
Juha Perkiömäki ◽  
...  

AbstractExercise is beneficial to cardiovascular health, evidenced by reduced post-exercise central aortic blood pressure (BP) and wave reflection. We assessed if post-exercise central hemodynamics are modified due to an altered thermal state related to exercise in the cold in patients with coronary artery disease (CAD). CAD patients (n = 11) performed moderate-intensity lower-body exercise (walking at 65–70% of HRmax) and rested in neutral (+ 22 °C) and cold (− 15 °C) conditions. In another protocol, CAD patients (n = 15) performed static (five 1.5 min work cycles, 10–30% of maximal voluntary contraction) and dynamic (three 5 min workloads, 56–80% of HRmax) upper-body exercise at the same temperatures. Both datasets consisted of four 30-min exposures administered in random order. Central aortic BP and augmentation index (AI) were noninvasively assessed via pulse wave analyses prior to and 25 min after these interventions. Lower-body dynamic exercise decreased post-exercise central systolic BP (6–10 mmHg, p < 0.001) and AI (1–6%, p < 0.001) both after cold and neutral and conditions. Dynamic upper-body exercise lowered central systolic BP (2–4 mmHg, p < 0.001) after exposure to both temperatures. In contrast, static upper-body exercise increased central systolic BP after exposure to cold (7 ± 6 mmHg, p < 0.001). Acute dynamic lower and upper-body exercise mainly lowers post-exercise central BP in CAD patients irrespective of the environmental temperature. In contrast, central systolic BP was elevated after static exercise in cold. CAD patients likely benefit from year-round dynamic exercise, but hemodynamic responses following static exercise in a cold environment should be examined further.Clinical trials.gov: NCT02855905 04/08/2016.


1983 ◽  
Vol 54 (5) ◽  
pp. 1403-1407 ◽  
Author(s):  
M. M. Toner ◽  
M. N. Sawka ◽  
L. Levine ◽  
K. B. Pandolf

The present study examined the influence that distributing exercise between upper (arm crank exercise) and lower (cycle exercise) body muscle groups had on cardiorespiratory responses to constant power output (PO) exercise. Six male volunteers completed five submaximal exercise bouts of 7-min duration at both 76 and 109 W. The arm PO/total PO (% arm) for these bouts was approximately 0, 20, 40, 60, and 100%. At 76 W, O2 uptake (VO2) did not change (P greater than 0.05) from 0 to approximately 20% arm (approximately 1.30 1 x min-1) but increased with increasing percent arm values up to 100% (1.58 1 x min-1). At 109 W, VO2 increased throughout the range of 0 (1.70 1 x min-1) to 100% arm (2.33 1 x min-1). In general, minute ventilation (VE) and respiratory exchange ratio (R) increased with increased percent arm values at 76 and 109 W. The heart rate (HR) responses remained unchanged from 0 to 60% arm at both 76 and 109 W; however, between 60 and 100% arm, a 26-beats x min-1 increase was observed at 76 W (143 beats x min-1 at 100% arm) and a 45-beats x min-1 increase at 109 W (174 beats x min-1 at 100% arm). These data suggested that during upper body exercise, the increased VO2 associated with increased percent arm values was not accompanied by an elevated HR response when at least 40% of the PO was performed by the lower body. This might be attributed to a facilitated venous return and/or a decreased total peripheral resistance when the lower body was involved in the exercise.


1999 ◽  
Vol 31 (10) ◽  
pp. 1453 ◽  
Author(s):  
JIE KANG ◽  
EDWARD C. CHALOUPKA ◽  
M. ALYSIA MASTRANGELO ◽  
JOHN ANGELUCCI

2016 ◽  
Vol 71 (1) ◽  
Author(s):  
E.F. Porto ◽  
A.A.M. Castro ◽  
M. Velloso ◽  
O. Nascimento ◽  
F. Dal Maso ◽  
...  

mandatory constituents of a rehabilitation programme for patients with COPD. However, it is not known how much these exercises may induce pulmonary dynamic hyperinflation (DH). Objective. To evaluate the DH in patients with COPD exercising the upper and lower parts of the body at the same metabolic demand. Methods. Sixteen patients aged 63 ± 13 years and with a FEV1 of 1.5 ± 0.7 L (41 ± 11% pred) were studied. Patients initially performed a maximal exercise test with the arms using the diagonal movement technique. The lower limbs were exercised on a treadmill at the same metabolic demand. Results. Inspiratory capacity decreased 222 ± 158 ml (9.8%) after the upper body exercise (p &lt; 0.0001) and 148 ± 161 ml (7%) after exercise with the lower body (p = 0.0028) and a difference between the two groups was found (p &lt; 0.05). There was no difference between resting IC before upper and lower limbs exercises (p = 0.8); increase in minute ventilation and in pulmonary ventilation in percentage of maximum voluntary ventilation and reduction of expiratory time were larger in the upper limbs exercise (p &lt; 0.05). Dyspnea as measured by the Borg Scale was higher in the upper body (3.9 ± 2.2) than in the lower body (2.3 ± 1.3) at the end of the exercise (p = 0.033). Pulmonary ventilation and inspiratory capacity were correlated (p = 0.0001; r = 0.82). Conclusion. Exercise with the upper part of the body causes more DH and dyspnea than exercise with the lower part of the body at the same metabolic demand.


1987 ◽  
Vol 63 (3) ◽  
pp. 1218-1223 ◽  
Author(s):  
A. J. Young ◽  
M. N. Sawka ◽  
Y. Epstein ◽  
B. Decristofano ◽  
K. B. Pandolf

The effect of varying the body surface area being cooled by a liquid microclimate system was evaluated during exercise heat-stress conditions. Six male subjects performed a total of six exercise (O2 uptake = 1.2 l/min) tests in a hot environment (ambient temperature = 38 degrees C, relative humidity = 30%) while dressed in clothing having low moisture permeability and high insulation. Each subject completed two upper body exercise (U; arm crank) tests: 1) with only the torso surface (T) cooled; and 2) with the surfaces of both the torso and upper arms (TA) cooled [coolant temperature at the inlet (Ti) was 20 degrees C for all upper body tests]. Each subject also completed four lower body exercise (L; walking) tests: 1) with only the T cooled (Ti = 20 degrees C); 2) with only the T cooled (Ti = 26 degrees C); 3) with torso, upper arm, and thigh surface (TAT) cooled (Ti = 20 degrees C); and 4) with TAT cooled (Ti = 26 degrees C). During U exercise, TA cooling had no effects compared with cooling only T. During L exercise, sweat rates, heart rates, and rectal temperature (Tre) changes were less with TAT cooling compared with cooling only the T. Altering Ti had no effect on Tre changes, but higher heart rates were observed with 26 than with 20 degrees C. These data indicate that cooling arms during upper body exercise provides no thermoregulatory advantage, although cooling the thigh surfaces during lower body exercise does provide an advantage.


2021 ◽  
Vol 3 ◽  
Author(s):  
Linda Marie Hansen ◽  
Øyvind Sandbakk ◽  
Gertjan Ettema ◽  
Julia Kathrin Baumgart

Purpose: To investigate the interaction between exercise modality (i.e., upper- and lower-body exercise) and sex in physiological responses and power output (PO) across the entire intensity spectrum (i.e., from low to maximal intensity).Methods: Ten male and 10 female cross-country (XC) skiers performed a stepwise incremental test to exhaustion consisting of 5 min stages with increasing workload employing upper-body poling (UP) and running (RUN) on two separate days. Mixed measures ANOVA were performed to investigate the interactions between exercise modalities (i.e., UP and RUN) and sex in physiological responses and PO across the entire exercise intensity spectrum.Results: The difference between UP and RUN (ΔUP−RUN), was not different in the female compared with the male XC skiers for peak oxygen uptake (18 ± 6 vs. 18 ± 6 mL·kg−1·min−1, p = 0.843) and peak PO (84 ± 18 vs. 91 ± 22 W, p = 0.207). At most given blood lactate and rating of perceived exertion values, ΔUP−RUN was larger in the male compared with the female skiers for oxygen uptake and PO, but these differences disappeared when the responses were expressed as % of the modality-specific peak.Conclusion: Modality-differences (i.e., ΔUP−RUN) in peak physiological responses and PO did not differ between the female and male XC skiers. This indicates that increased focus on upper-body strength and endurance training in female skiers in recent years may have closed the gap between upper- and lower-body endurance capacity compared with male XC skiers. In addition, no sex-related considerations need to be made when using relative physiological responses for intensity regulation within a specific exercise modality.


1983 ◽  
Vol 15 (2) ◽  
pp. 158
Author(s):  
N. A. Pimental ◽  
M. N. Sawka ◽  
L. A. Trad ◽  
K. B. Pandolf

1984 ◽  
Vol 57 (4) ◽  
pp. 1050-1054 ◽  
Author(s):  
M. N. Sawka ◽  
R. R. Gonzalez ◽  
L. L. Drolet ◽  
K. B. Pandolf

This study examined evaporative and dry heat exchange during upper- and lower-body exercise. Four male subjects performed arm-crank or cycle exercise at the same O2 uptake level (approximately 1.6 l/min) in an environment facilitating dry heat exchange [radiative and convective (R + C)] [ambient temperature (Ta) = 18 degrees C, dew-point temperature (Tdp) = 14 degrees C] and an environment facilitating evaporative heat loss (Esk) (Ta = 35 degrees C, Tdp = 14 degrees C). (R + C) was determined from the torso with a net radiometer and from the limbs with heat flow discs, whereas Esk was determined from the torso and limbs by ventilated dew-point sensors. In both environments neither esophageal temperature nor mean skin temperature were different between exercise types (P greater than 0.05). Torso (R + C) was significantly (P less than 0.05) greater during arm-crank than during cycle exercise in both environments. Torso Esk, as well as arm (R + C), and arm Esk were not different (P greater than 0.05) between exercise types in each environment. Leg (R + C) was greater (P less than 0.05) during cycle than during arm-crank exercise in the 18 degrees C environment, whereas leg Esk was greater (P less than 0.05) during cycle than during arm-crank exercise in the 35 degrees C environment. These data indicate that to compensate for greater torso sensible heat loss during upper body exercise lower body exercise elicits additional (R + C) or Esk from the legs. The avenue for this compensatory sensible and insensible heat loss depends upon the differential heat transfer coefficients which influence tissue conductivity and mass transfer.


Sign in / Sign up

Export Citation Format

Share Document