scholarly journals Alternative Splicing in the Nuclear Receptor Superfamily Expands Gene Function to Refine Endo-Xenobiotic Metabolism

2020 ◽  
Vol 48 (4) ◽  
pp. 272-287 ◽  
Author(s):  
Andrew J. Annalora ◽  
Craig B. Marcus ◽  
Patrick L. Iversen
2016 ◽  
Vol 14 (1) ◽  
pp. nrs.14002 ◽  
Author(s):  
Shailaja D. Divekar ◽  
Deanna M. Tiek ◽  
Aileen Fernandez ◽  
Rebecca B. Riggins

Estrogen-related receptors (ERRs) are founding members of the orphan nuclear receptor (ONR) subgroup of the nuclear receptor superfamily. Twenty-seven years of study have yet to identify cognate ligands for the ERRs, though they have firmly placed ERRα (ESRRA) and ERRγ (ESRRG) at the intersection of cellular metabolism and oncogenesis. The pace of discovery for novel functions of ERRβ (ESRRB), however, has until recently been somewhat slower than that of its family members. ERRβ has also been largely ignored in summaries and perspectives of the ONR literature. Here, we provide an overview of established and emerging knowledge of ERRβ in mouse, man, and other species, highlighting unique aspects of ERRβ biology that set it apart from the other two estrogen-related receptors, with a focus on the impact of alternative splicing on the structure and function of this receptor.


2005 ◽  
Vol 79 (5) ◽  
pp. 2859-2868 ◽  
Author(s):  
Myrna M. Miller ◽  
Keith W. Jarosinski ◽  
Karel A. Schat

ABSTRACT Chicken anemia virus (CAV) is a small circular single-stranded DNA virus with a single promoter-enhancer region containing four consensus cyclic AMP response element sequences (AGCTCA), which are similar to the estrogen response element (ERE) consensus half-sites (A)GGTCA. These sequences are arranged as direct repeats, an arrangement that can be recognized by members of the nuclear receptor superfamily. Transient-transfection assays which use a short CAV promoter construct that ended at the transcription start site and drive expression of enhanced green fluorescent protein (EGFP) showed high basal activity in DF-1, LMH, LMH/2A, and primary theca and granulosa cells. The estrogen receptor-enhanced cell line, LMH/2A, had significantly greater expression than LMH cells, and this expression was significantly increased with estrogen treatment. A long promoter construct which included GGTCA-like sequences downstream of the first CAV protein translation start site was found to have significantly less EGFP expression in DF-1 cells than the short promoter, which was largely due to decreased RNA transcription. DNA-protein binding assays indicated that proteins recognizing a consensus ERE palindrome also bind GGTCA-like sequences in the CAV promoter. Estrogen receptor and other members of the nuclear receptor superfamily may provide a mechanism to regulate CAV activity in situations of low virus copy number.


2018 ◽  
Vol 1 (5) ◽  
pp. e201800157 ◽  
Author(s):  
Tommaso Tabaglio ◽  
Diana HP Low ◽  
Winnie Koon Lay Teo ◽  
Pierre Alexis Goy ◽  
Piotr Cywoniuk ◽  
...  

The extent of and the oncogenic role played by alternative splicing (AS) in cancer are well documented. Nonetheless, only few studies have attempted to dissect individual gene function at an isoform level. Here, we focus on the AS of splicing factors during prostate cancer progression, as these factors are known to undergo extensive AS and have the potential to affect hundreds of downstream genes. We identified exon 7 (ex7) in the MBNL1 (Muscleblind-like 1) transcript as being the most differentially included exon in cancer, both in cell lines and in patients' samples. In contrast, MBNL1 overall expression was down-regulated, consistently with its described role as a tumor suppressor. This observation holds true in the majority of cancer types analyzed. We first identified components associated to the U2 splicing complex (SF3B1, SF3A1, and PHF5A) as required for efficient ex7 inclusion and we confirmed that this exon is fundamental for MBNL1 protein homodimerization. We next used splice-switching antisense oligonucleotides (AONs) or siRNAs to compare the effect of MBNL1 splicing isoform switching with knockdown. We report that whereas the absence of MBNL1 is tolerated in cancer cells, the expression of isoforms lacking ex7 (MBNL1 Δex7) induces DNA damage and inhibits cell viability and migration, acting as dominant negative proteins. Our data demonstrate the importance of studying gene function at the level of alternative spliced isoforms and support our conclusion that MBNL1 Δex7 proteins are antisurvival factors with a defined tumor suppressive role that cancer cells tend to down-regulate in favor of MBNL +ex7 isoforms.


Cancers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1852 ◽  
Author(s):  
Baylee A. Porter ◽  
Maria A. Ortiz ◽  
Gennady Bratslavsky ◽  
Leszek Kotula

The nuclear receptor superfamily comprises a large group of proteins with functions essential for cell signaling, survival, and proliferation. There are multiple distinctions between nuclear superfamily classes defined by hallmark differences in function, ligand binding, tissue specificity, and DNA binding. In this review, we utilize the initial classification system, which defines subfamilies based on structure and functional difference. The defining feature of the nuclear receptor superfamily is that these proteins function as transcription factors. The loss of transcriptional regulation or gain of functioning of these receptors is a hallmark in numerous diseases. For example, in prostate cancer, the androgen receptor is a primary target for current prostate cancer therapies. Targeted cancer therapies for nuclear hormone receptors have been more feasible to develop than others due to the ligand availability and cell permeability of hormones. To better target these receptors, it is critical to understand their structural and functional regulation. Given that late-stage cancers often develop hormone insensitivity, we will explore the strengths and pitfalls of targeting other transcription factors outside of the nuclear receptor superfamily such as the signal transducer and activator of transcription (STAT).


2011 ◽  
Vol 108 (51) ◽  
pp. 20790-20795 ◽  
Author(s):  
D. A. Glauser ◽  
B. E. Johnson ◽  
R. W. Aldrich ◽  
M. B. Goodman

Sign in / Sign up

Export Citation Format

Share Document