scholarly journals MBNL1 alternative splicing isoforms play opposing roles in cancer

2018 ◽  
Vol 1 (5) ◽  
pp. e201800157 ◽  
Author(s):  
Tommaso Tabaglio ◽  
Diana HP Low ◽  
Winnie Koon Lay Teo ◽  
Pierre Alexis Goy ◽  
Piotr Cywoniuk ◽  
...  

The extent of and the oncogenic role played by alternative splicing (AS) in cancer are well documented. Nonetheless, only few studies have attempted to dissect individual gene function at an isoform level. Here, we focus on the AS of splicing factors during prostate cancer progression, as these factors are known to undergo extensive AS and have the potential to affect hundreds of downstream genes. We identified exon 7 (ex7) in the MBNL1 (Muscleblind-like 1) transcript as being the most differentially included exon in cancer, both in cell lines and in patients' samples. In contrast, MBNL1 overall expression was down-regulated, consistently with its described role as a tumor suppressor. This observation holds true in the majority of cancer types analyzed. We first identified components associated to the U2 splicing complex (SF3B1, SF3A1, and PHF5A) as required for efficient ex7 inclusion and we confirmed that this exon is fundamental for MBNL1 protein homodimerization. We next used splice-switching antisense oligonucleotides (AONs) or siRNAs to compare the effect of MBNL1 splicing isoform switching with knockdown. We report that whereas the absence of MBNL1 is tolerated in cancer cells, the expression of isoforms lacking ex7 (MBNL1 Δex7) induces DNA damage and inhibits cell viability and migration, acting as dominant negative proteins. Our data demonstrate the importance of studying gene function at the level of alternative spliced isoforms and support our conclusion that MBNL1 Δex7 proteins are antisurvival factors with a defined tumor suppressive role that cancer cells tend to down-regulate in favor of MBNL +ex7 isoforms.

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Feng Guo ◽  
Yingke Zhou ◽  
Hui Guo ◽  
Dianyun Ren ◽  
Xin Jin ◽  
...  

AbstractNR5A2 is a transcription factor regulating the expression of various oncogenes. However, the role of NR5A2 and the specific regulatory mechanism of NR5A2 in pancreatic ductal adenocarcinoma (PDAC) are not thoroughly studied. In our study, Western blotting, real-time PCR, and immunohistochemistry were conducted to assess the expression levels of different molecules. Wound-healing, MTS, colony formation, and transwell assays were employed to evaluate the malignant potential of pancreatic cancer cells. We demonstrated that NR5A2 acted as a negative prognostic biomarker in PDAC. NR5A2 silencing inhibited the proliferation and migration abilities of pancreatic cancer cells in vitro and in vivo. While NR5A2 overexpression markedly promoted both events in vitro. We further identified that NR5A2 was transcriptionally upregulated by BRD4 in pancreatic cancer cells and this was confirmed by Chromatin immunoprecipitation (ChIP) and ChIP-qPCR. Besides, transcriptome RNA sequencing (RNA-Seq) was performed to explore the cancer-promoting effects of NR5A2, we found that GDF15 is a component of multiple down-regulated tumor-promoting gene sets after NR5A2 was silenced. Next, we showed that NR5A2 enhanced the malignancy of pancreatic cancer cells by inducing the transcription of GDF15. Collectively, our findings suggest that NR5A2 expression is induced by BRD4. In turn, NR5A2 activates the transcription of GDF15, promoting pancreatic cancer progression. Therefore, NR5A2 and GDF15 could be promising therapeutic targets in pancreatic cancer.


Author(s):  
Jinfen Wei ◽  
Zixi Chen ◽  
Meiling Hu ◽  
Ziqing He ◽  
Dawei Jiang ◽  
...  

Hypoxia is a characteristic of tumor microenvironment (TME) and is a major contributor to tumor progression. Yet, subtype identification of tumor-associated non-malignant cells at single-cell resolution and how they influence cancer progression under hypoxia TME remain largely unexplored. Here, we used RNA-seq data of 424,194 single cells from 108 patients to identify the subtypes of cancer cells, stromal cells, and immune cells; to evaluate their hypoxia score; and also to uncover potential interaction signals between these cells in vivo across six cancer types. We identified SPP1+ tumor-associated macrophage (TAM) subpopulation potentially enhanced epithelial–mesenchymal transition (EMT) by interaction with cancer cells through paracrine pattern. We prioritized SPP1 as a TAM-secreted factor to act on cancer cells and found a significant enhanced migration phenotype and invasion ability in A549 lung cancer cells induced by recombinant protein SPP1. Besides, prognostic analysis indicated that a higher expression of SPP1 was found to be related to worse clinical outcome in six cancer types. SPP1 expression was higher in hypoxia-high macrophages based on single-cell data, which was further validated by an in vitro experiment that SPP1 was upregulated in macrophages under hypoxia-cultured compared with normoxic conditions. Additionally, a differential analysis demonstrated that hypoxia potentially influences extracellular matrix remodeling, glycolysis, and interleukin-10 signal activation in various cancer types. Our work illuminates the clearer underlying mechanism in the intricate interaction between different cell subtypes within hypoxia TME and proposes the guidelines for the development of therapeutic targets specifically for patients with high proportion of SPP1+ TAMs in hypoxic lesions.


2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Yuanshen Mao ◽  
Wenfeng Li ◽  
Bao Hua ◽  
Xin Gu ◽  
Weixin Pan ◽  
...  

ELK3, an ETS domain-containing transcription factor, participates in various physiological and pathological processes including cell proliferation, migration, angiogenesis, and malignant progression. However, the role of ELK3 in prostate cancer cells and its mechanism are not fully understood. The contribution of ELK3 to prostate cancer progression was investigated in the present study. We showed that silencing of ELK3 by siRNA in prostate cancer cell DU145 induced S-M phase arrest, promoted apoptosis, inhibited cell proliferation and migration in vitro, and suppressed xenograft growth in mice in vivo. In accordance with its ability to arrest cells in S-M phase, the expression of cyclin A and cyclin B was downregulated. In addition, the expression of p53 was upregulated following ELK3 knockdown, while that of antiapoptotic Bcl-2 was decreased. The migration inhibition may partly due to upregulation of SERPINE1 (a serine protease inhibitor) followed ELK3 knockdown. Consistently, downregulation of SERPINE1 resulted in a modest elimination of migration inhibition resulted from ELK3 knockdown. Furthermore, we found that the AKT signaling was activated in ELK3 knockdown cells, and treatment these cells with AKT inhibitor attenuated SERPINE1 expression induced by ELK3 silencing, suggesting that activation of AKT pathway may be one of the reasons for upregulation of SERPINE1 after ELK3 knockdown. In conclusion, modulation of ELK3 expression may control the progression of prostate cancer partly by regulating cell growth, apoptosis, and migration.


2018 ◽  
Vol 46 (5) ◽  
pp. 1137-1146 ◽  
Author(s):  
Arash Latifkar ◽  
Richard A. Cerione ◽  
Marc A. Antonyak

Tumor cells interact with each other, and their surroundings, using a variety of mechanisms to promote virtually all aspects of cancer progression. One such form of intercellular communication that has been attracting considerable attention from the cancer community and the pharmaceutical industry in recent years involves the ability of cancer cells to generate multiple distinct types of non-classical secretory vesicles, generally referred to as extracellular vesicles (EVs). Microvesicles (MVs) represent one of the major classes of EVs and are formed as a result of the outward budding and fission of the plasma membrane. The other main class of EVs is exosomes, which are generated when multivesicular bodies fuse with the cell surface and release their contents into the extracellular space. Both MVs and exosomes have been shown to contain bioactive cargo, including proteins, metabolites, RNA transcripts, microRNAs, and DNA that can be transferred to other cancer cells and stimulate their growth, survival, and migration. However, cancer cell-derived EVs also play important roles in helping re-shape the tumor microenvironment to support tumor expansion and invasive activity, dampen immune responses, as well as enter the circulation to help promote metastatic spread. Here, we provide an overview of what is currently known regarding how the different classes of EVs are generated and contribute to various cancer cell phenotypes. Moreover, we highlight how some of the unique properties of EVs are being used for the development of novel diagnostic and clinical applications.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Marianna Nicoletta Rossi ◽  
Fabrizio Antonangeli

The discovery that the mammalian genome is largely transcribed and that almost half of the polyadenylated RNAs is composed of noncoding RNAs has attracted the attention of the scientific community. Growing amount of data suggests that long noncoding RNAs (lncRNAs) are a new class of regulators involved not only in physiological processes, such as imprinting and differentiation, but also in cancer progression and neurodegeneration. Apoptosis is a well regulated type of programmed cell death necessary for correct organ development and tissue homeostasis. Indeed, cancer cells often show an inhibition of the apoptotic pathways and it is now emerging that overexpression or downregulation of different lncRNAs in specific types of tumors sensitize cancer cells to apoptotic stimuli. In this review we summarize the latest studies on lncRNAs and apoptosis with major attention to those performed in cancer cells and in healthy cells upon differentiation. We discuss the new perspectives of using lncRNAs as targets of anticancer drugs. Finally, considering that lncRNA levels have been reported to have a correlation with specific cancer types, we argue the possibility of using lncRNAs as tumor biomarkers.


2020 ◽  
Author(s):  
Ian T Lobb ◽  
Pierre Morin ◽  
Kirsty Martin ◽  
Xhordi Lieshi ◽  
Karl Olsen ◽  
...  

AbstractElevated NF-κB activity is a contributory factor in many haematological and solid malignancies. Nucleolar sequestration of NF-κB/RelA represses this elevated activity and mediates apoptosis of cancer cells. Here we set out to understand the mechanisms that control the nuclear/nucleolar distribution of RelA and other regulatory proteins, so that agents can be developed that specifically target these proteins to the organelle. We demonstrate that RelA accumulates in intra-nucleolar aggresomes in response to specific stresses. We also demonstrate that the autophagy receptor, SQSTM1/p62, accumulates alongside RelA in these nucleolar aggresomes. This accumulation is not a consequence of inhibited autophagy. Indeed, our data suggest nucleolar and autophagosomal accumulation of p62 are in active competition. We identify a conserved motif at the N-terminus of p62 that is essential for nucleoplasmic-to nucleolar transport of the protein. Furthermore, using a dominant negative mutant deleted for this nucleolar localisation signal (NoLS), we demonstrate a role for p62 in trafficking RelA and other aggresome-related proteins to nucleoli. Together, these data identify a novel role for p62 in trafficking nuclear proteins to nucleolar aggresomes under conditions of cell stress, thus maintaining nuclear proteostasis. They also provide invaluable information on the mechanisms that regulate the nuclear/nucleolar distribution of RelA that could be exploited for therapeutic purpose.SignificanceAberrant NF-κB activity drives many of the hallmarks of cancer and plays a key role in cancer progression. Nucleolar sequestration of NF-κB/RelA is one mechanism that switches off this activity and induces the death of cancer cells. Here we define a novel role for the autophagy receptor, SQSTM1/p62 in transport of nucleoplasmic NF-κB/RelA to nucleoli. Identification of this new trafficking mechanism opens up avenues for the development of a unique class of therapeutic agents that transport RelA and other cancer regulatory proteins to this organelle.


2019 ◽  
Author(s):  
Roshina Thapa ◽  
Swetha Vasudevan ◽  
Mimi Abo-Ayoub Ashqar ◽  
Eli Reich ◽  
Nataly Kravchenko-Balasha ◽  
...  

AbstractCancer cells have an altered transcriptome which contributes to their altered behaviors compared to normal cells. Indeed, many tumors express high levels of genes participating in meiosis or kinetochore biology, but the role of this high expression has not been fully elucidated. In this study we explore the relationship between this overexpression and genome instability and transformation capabilities of cancer cells. For this, we obtained expression data from 5 different cancer types which were analyzed using computational information-theoretic analysis. We were able to show that highly expressed meiotic/kinetochore genes were enriched in the altered gene expression subnetworks characterizing unstable cancer types with high chromosome instability (CIN). However, altered subnetworks found in the cancers with low CIN did not include meiotic and kinetochore genes. Representative gene candidates, found by the analysis to be correlated with a CIN phenotype, were further explored by transfecting genomically-stable (HCT116) and unstable (MCF7) cancer cell lines with vectors overexpressing those genes. This overexpression resulted in an increase in the numbers of abnormal cell divisions and defective spindle formations and in increased transformation properties in stable cancer HCT116 cells. Interestingly, the same properties were less affected by the overexpressed genes in the unstable MCF7 cancer cells. Our results indicate that overexpression of both meiosis and kinetochore genes is capable of driving genomic instability and cancer progression.


2009 ◽  
Vol 390 (7) ◽  
Author(s):  
Aurélie Cazet ◽  
Sophie Groux-Degroote ◽  
Béatrice Teylaert ◽  
Kyung-Min Kwon ◽  
Sylvain Lehoux ◽  
...  

Abstract The disialoganglioside GD3 is an oncofetal marker of a variety of human tumors including melanoma and neuroblastoma, playing a key role in tumor progression. GD3 and 9-O-acetyl-GD3 are overexpressed in approximately 50% of invasive ductal breast carcinoma, but no relationship has been established between disialoganglioside expression and breast cancer progression. In order to determine the effect of GD3 expression on breast cancer development, we analyzed the biosynthesis of gangliosides in several breast epithelial cell lines including MDA-MB-231, MCF-7, BT-20, T47-D, and MCF10A, by immunocytochemistry, flow cytometry, and real-time PCR. Our results show that, in comparison to tumors, cultured breast cancer cells express a limited pattern of gangliosides. Disialogangliosides were not detected in any cell line and GM3 was only observed at the cell surface of MDA-MB-231 cells. To evaluate the influence of GD3 in breast cancer cell behavior, we established and characterized MDA-MB-231 cells overexpressing GD3 synthase. We show that GD3 synthase expressing cells accumulate GD3, GD2, and GT3 at the cell surface. Moreover, GD3 synthase overexpression bypasses the need of serum for cell growth and increases cell migration. This suggests that GD3 synthase overexpression may contribute to increasing the malignant properties of breast cancer cells.


Cancers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1337 ◽  
Author(s):  
Katherine E. Pickup ◽  
Felicitas Pardow ◽  
José Carbonell-Caballero ◽  
Antonios Lioutas ◽  
José Luis Villanueva-Cañas ◽  
...  

The growth of cancer cells as oncospheres in three-dimensional (3D) culture provides a robust cell model for understanding cancer progression, as well as for early drug discovery and validation. We have previously described a novel pathway in breast cancer cells, whereby ADP (Adenosine diphosphate)-ribose derived from hydrolysis of poly (ADP-Ribose) and pyrophosphate (PPi) are converted to ATP, catalysed by the enzyme NUDT5 (nucleotide diphosphate hydrolase type 5). Overexpression of the NUDT5 gene in breast and other cancer types is associated with poor prognosis, increased risk of recurrence and metastasis. In order to understand the role of NUDT5 in cancer cell growth, we performed phenotypic and global expression analysis in breast cancer cells grown as oncospheres. Comparison of two-dimensional (2D) versus 3D cancer cell cultures from different tissues of origin suggest that NUDT5 increases the aggressiveness of the disease via the modulation of several key driver genes, including ubiquitin specific peptidase 22 (USP22), RAB35B, focadhesin (FOCAD) and prostagladin E synthase (PTGES). NUDT5 functions as a master regulator of key oncogenic pathways and of genes involved in cell adhesion, cancer stem cell (CSC) maintenance and epithelial to mesenchyme transition (EMT). Inhibiting the enzymatic activities of NUDT5 prevents oncosphere formation and precludes the activation of cancer driver genes. These findings highlight NUDT5 as an upstream regulator of tumour drivers and may provide a biomarker for cancer stratification, as well as a novel target for drug discovery for combinatorial drug regimens for the treatment of aggressive cancer types and metastasis.


Sign in / Sign up

Export Citation Format

Share Document