scholarly journals The sulfated steroids pregnenolone sulfate and dehydroepiandrosterone sulfate inhibit the α1β3γ2L GABAA receptor by stabilizing a novel non-conducting state

2021 ◽  
pp. MOLPHARM-AR-2021-000385
Author(s):  
Spencer R. Pierce ◽  
Allison L. Germann ◽  
Joseph Henry Steinbach ◽  
Gustav Akk
2007 ◽  
Vol 557 (2-3) ◽  
pp. 124-131 ◽  
Author(s):  
Ming-De Wang ◽  
Mozibur Rahman ◽  
Di Zhu ◽  
Inga-Maj Johansson ◽  
Torbjörn Bäckström

2018 ◽  
Vol 7 (10) ◽  
pp. 1020-1030
Author(s):  
Thomas Reinehr ◽  
Alberto Sánchez-Guijo ◽  
Nina Lass ◽  
Stefan A Wudy

Objective Little information is available on the steroid sulfates profile in obese children. Therefore, we examined whether sulfated steroids are linked with weight status and associated comorbidities in obese children. Methods We analyzed 66 obese children (mean age 10.5 ± 2.5 years, 57.6% female, 53.9% prepubertal, mean BMI 27.0 ± 4.6 kg/m2, 50% with BMI-SDS reduction >0.5, 50% without BMI-SDS reduction) who participated in an outpatient 1-year intervention program based on exercise, behavior and nutrition therapy. We measured intact sulfated steroids (cholesterol sulfate (CS), pregnenolone sulfate (PregS), 17αOH pregnenolone sulfate (17OH-PregS), 16αOH dehydroepiandrosterone sulfate (16OH-DHEAS), DHEAS, androstenediol-3-sulfate, androsterone sulfate and epiandrosterone sulfate) by LC–MS/MS, and insulin resistance index HOMA, lipids, blood pressure at baseline and 1 year later. Results All sulfated steroids except 17OH-PregS, 16OH-DHEAS, androsterone sulfate and epiandrosterone sulfate were higher in boys compared to girls. Concentrations of CS before intervention were higher in children who lost weight. After 1 year of treatment, both groups showed increased levels of DHEAS, 16OH-DHEAS and androstenediol-3-sulfate, but PregS was only increased in children with weight loss. None of the steroid sulfates was significantly related to cardiovascular risk factors or HOMA except 17OH-PregS, which was associated with systolic blood pressure both in cross-sectional (β-coefficient: 0.09 ± 0.07, P = 0.020) and longitudinal analyses (β-coefficient: 0.06 ± 0.04, P = 0.013) in multiple linear regression analyses. Conclusions Since higher steroid sulfation capacity was associated with successful weight intervention in children disruption of sulfation may be associated with difficulties to lose weight. Future studies are necessary to prove this hypothesis.


Endocrinology ◽  
2003 ◽  
Vol 144 (10) ◽  
pp. 4366-4375 ◽  
Author(s):  
Shannon D. Sullivan ◽  
Suzanne M. Moenter

Pulsatile GnRH release is required for fertility and is regulated by steroid feedback. Whether or not steroids or their metabolites act directly on GnRH neurons is not well established. In some neurons, steroid metabolites known as neurosteroids modulate the function of the GABAA receptor. Specifically, the progesterone derivative allopregnanolone is an allosteric agonist at this receptor, whereas the androgen dehydroepiandrosterone sulfate (DHEAS) is an allosteric antagonist. We hypothesized these metabolites act similarly on GnRH neurons to modify the response to GABA. Whole-cell voltage-clamp recordings of GABAergic miniature postsynaptic currents (mPSCs) were made from green fluorescent protein-identified GnRH neurons in brain slices from diestrous mice. Glutamatergic currents were blocked with antagonists and action potentials blocked with tetrodotoxin, minimizing presynaptic effects of treatments. Allopregnanolone (5 μm) increased mPSC rate of rise, amplitude and decay time by 15.9 ± 6.1%, 16.5 ± 6.3%, and 58.3 ± 18.6%, respectively (n = 7 cells). DHEAS (5 μm) reduced mPSC rate of rise (32.1 ± 5.7%) and amplitude (27.6 ± 4.3%) but did not alter decay time (n = 8). Effects of both neurosteroids were dose dependent between 0.1 and 10 μm. In addition to independent actions, DHEAS also reversed effects of allopregnanolone on rate of rise and amplitude so that these parameters were returned to pretreatment baseline values (n = 6). These data indicate allopregnanolone increases and DHEAS decreases responsiveness of GnRH neurons to activation of GABAA receptors by differentially modulating current flow through GABAA receptor chloride channels. This provides one mechanism for direct steroid feedback to GnRH neurons.


2017 ◽  
Vol 103 (1) ◽  
pp. 320-327 ◽  
Author(s):  
Juilee Rege ◽  
Aya T Nanba ◽  
Richard J Auchus ◽  
Jianwei Ren ◽  
Hwei-Ming Peng ◽  
...  

Abstract Background Dehydroepiandrosterone sulfate (DHEAS) is the most abundant steroid in human circulation, and adrenocorticotropic hormone (ACTH) is considered the major regulator of its synthesis. Pregnenolone sulfate (PregS) and 5-androstenediol-3-sulfate (AdiolS) have recently emerged as biomarkers of adrenal disorders. Objective To define the relative human adrenal production of Δ5-steroid sulfates under basal and cosyntropin-stimulated conditions. Methods Liquid chromatography-tandem mass spectrometry was used to quantify three unconjugated and four sulfated Δ5-steroids in (1) paired adrenal vein (AV) and mixed venous serum samples (21 patients) and (2) cultured human adrenal cells both before and after cosyntropin stimulation, (3) microdissected zona fasciculata (ZF) and zona reticularis (ZR) from five human adrenal glands, and (4) a reconstituted in vitro human 17α-hydroxylase/17,20-lyase/(P450 17A1) system. Results Of the steroid sulfates, PregS had the greatest increase after cosyntropin stimulation in the AV (32-fold), whereas DHEAS responded modestly (1.8-fold). PregS attained concentrations comparable to those of DHEAS in the AV after cosyntropin stimulation (AV DHEAS/PregS, 24 and 1.3 before and after cosyntropin, respectively). In cultured adrenal cells, PregS demonstrated the sharpest response to cosyntropin, whereas DHEAS responded only modestly (21-fold vs 1.8-fold higher compared with unstimulated cells at 3 hours, respectively). Steroid analyses in isolated ZF and ZR showed similar amounts of PregS and 17α-hydroxypregnenolone in both zones, whereas DHEAS and AdiolS were higher in ZR (P < 0.05). Conclusion Our studies demonstrated that unlike DHEAS, PregS displayed a prominent acute response to cosyntropin. PregS could be used to interrogate the acute adrenal response to ACTH stimulation and as a biomarker in various adrenal disorders.


Sign in / Sign up

Export Citation Format

Share Document