scholarly journals Dielectric capacitors with three-dimensional nanoscale interdigital electrodes for energy storage

2015 ◽  
Vol 1 (9) ◽  
pp. e1500605 ◽  
Author(s):  
Fangming Han ◽  
Guowen Meng ◽  
Fei Zhou ◽  
Li Song ◽  
Xinhua Li ◽  
...  

Dielectric capacitors are promising candidates for high-performance energy storage systems due to their high power density and increasing energy density. However, the traditional approach strategies to enhance the performance of dielectric capacitors cannot simultaneously achieve large capacitance and high breakdown voltage. We demonstrate that such limitations can be overcome by using a completely new three-dimensional (3D) nanoarchitectural electrode design. First, we fabricate a unique nanoporous anodic aluminum oxide (AAO) membrane with two sets of interdigitated and isolated straight nanopores opening toward opposite planar surfaces. By depositing carbon nanotubes in both sets of pores inside the AAO membrane, the new dielectric capacitor with 3D nanoscale interdigital electrodes is simply realized. In our new capacitors, the large specific surface area of AAO can provide large capacitance, whereas uniform pore walls and hemispheric barrier layers can enhance breakdown voltage. As a result, a high energy density of 2 Wh/kg, which is close to the value of a supercapacitor, can be achieved, showing promising potential in high-density electrical energy storage for various applications.

RSC Advances ◽  
2020 ◽  
Vol 10 (34) ◽  
pp. 20173-20183
Author(s):  
Yasai Wang ◽  
Guilin Feng ◽  
Yang Wang ◽  
Zhenguo Wu ◽  
Yanxiao Chen ◽  
...  

Lithium–sulfur batteries are considered to be promising energy storage devices owing to their high energy density, relatively low price and abundant resources.


2018 ◽  
Vol 6 (4) ◽  
pp. 1802-1808 ◽  
Author(s):  
Ke Li ◽  
Yanshan Huang ◽  
Jingjing Liu ◽  
Mansoor Sarfraz ◽  
Phillips O. Agboola ◽  
...  

Three-dimensional graphene frameworks enable the development of stretchable asymmetric supercapacitors with a record high energy density of 77.8 W h kg−1, and also excellent stretchability and superior cycling stability.


2016 ◽  
Vol 4 (43) ◽  
pp. 16879-16885 ◽  
Author(s):  
Ya Wang ◽  
Hui Dou ◽  
Bing Ding ◽  
Jie Wang ◽  
Zhi Chang ◽  
...  

A symmetric capacitor based on facilely synthesized three-dimensional oriented porous carbon nanosheets delivers high energy density.


2018 ◽  
Vol 08 (06) ◽  
pp. 1850040 ◽  
Author(s):  
Xuefan Zhou ◽  
Lu Wang ◽  
Guoliang Xue ◽  
Kechao Zhou ◽  
Hang Luo ◽  
...  

The high-performance energy-storage dielectric capacitors are increasingly important due to their wide applications in high power electronics. Here, we fabricated a novel P(VDF-HFP)-based capacitor with surface-modified NBT-[Formula: see text]ST ([Formula: see text], 0.10, 0.26) whiskers, denoted as Dop@NBT-[Formula: see text]ST/P(VDF-HFP). The influences of ST content, fillers’ volume fraction and electric field on the dielectric properties and energy-storage performance of the composites were investigated systematically. The results show that the dielectric constant monotonously increased with the increase of ST content and fillers’ volume fraction. The composite containing 10.0 vol% NBT-0.26ST whiskers possessed a dielectric constant of 39 at 1[Formula: see text]kHz, which was 5.6 times higher than that of pure P(VDF-HFP). It was noticed that the D-E loops of the composites became thinner and thinner with the increase of ST content. Due to the reduced remnant polarization, the composite with 5.0 vol% NBT-0.26ST whiskers achieved a high energy density of 6.18[Formula: see text]J/cm3 and energy efficiency of approximately 57% at a relatively low electric field of 200[Formula: see text]kV/mm. This work indicated that NBT-0.26ST whisker is a kind of potential ceramic filler in fabricating the dielectric capacitor with high discharged energy density and energy efficiency.


2019 ◽  
Vol 6 (8) ◽  
pp. 2061-2070 ◽  
Author(s):  
Jai Bhagwan ◽  
Bhimanaboina Ramulu ◽  
Jae Su Yu

The investigation of nanomaterials with improved energy storage performance is essential in the development of high energy density supercapacitors.


2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Lu Wang ◽  
Junwei Han ◽  
Debin Kong ◽  
Ying Tao ◽  
Quan-Hong Yang

Abstract Lithium-ion batteries (LIBs), which are high-energy-density and low-safety-risk secondary batteries, are underpinned to the rise in electrochemical energy storage devices that satisfy the urgent demands of the global energy storage market. With the aim of achieving high energy density and fast-charging performance, the exploitation of simple and low-cost approaches for the production of high capacity, high density, high mass loading, and kinetically ion-accessible electrodes that maximize charge storage and transport in LIBs, is a critical need. Toward the construction of high-performance electrodes, carbons are promisingly used in the enhanced roles of active materials, electrochemical reaction frameworks for high-capacity noncarbons, and lightweight current collectors. Here, we review recent advances in the carbon engineering of electrodes for excellent electrochemical performance and structural stability, which is enabled by assembled carbon architectures that guarantee sufficient charge delivery and volume fluctuation buffering inside the electrode during cycling. Some specific feasible assembly methods, synergism between structural design components of carbon assemblies, and electrochemical performance enhancement are highlighted. The precise design of carbon cages by the assembly of graphene units is potentially useful for the controlled preparation of high-capacity carbon-caged noncarbon anodes with volumetric capacities over 2100 mAh cm−3. Finally, insights are given on the prospects and challenges for designing carbon architectures for practical LIBs that simultaneously provide high energy densities (both gravimetric and volumetric) and high rate performance.


2017 ◽  
Vol 41 (17) ◽  
pp. 9024-9032 ◽  
Author(s):  
Enke Feng ◽  
Hui Peng ◽  
Zhiguo Zhang ◽  
Jindan Li ◽  
Ziqiang Lei

As-fabricated foldable solid-state supercapacitors are suitable for highly fold-tolerant high-energy-density energy storage device applications.


2016 ◽  
Vol 4 (2) ◽  
pp. 587-595 ◽  
Author(s):  
Sourav Bag ◽  
C. Retna Raj

Nanocrystalline mesoporous α-MnO2 is synthesized for the fabrication of a high energy density aqueous asymmetric supercapacitor device.


2021 ◽  
Vol 118 (21) ◽  
pp. e2105610118
Author(s):  
Yu Ma ◽  
Ding Chen ◽  
Zhi Fang ◽  
Yapeng Zheng ◽  
Weijun Li ◽  
...  

In terms of ideal future energy storage systems, besides the always-pursued energy/power characteristics, long-term stability is crucial for their practical application. Here, we report a facile and sustainable strategy for the scalable fabrication of carbon aerogels with three-dimensional interconnected nanofiber networks and rationally designed hierarchical porous structures, which are based on the carbonization of bacterial cellulose assisted by the soft template of Zn-1,3,5-benzenetricarboxylic acid. As binder-free electrodes, they deliver a fundamentally enhanced specific capacitance of 352 F ⋅ g–1 at 1 A ⋅ g–1 in a wide potential window (1.2 V, 6 M KOH) in comparison with those of bacterial cellulose–derived carbons (178 F ⋅ g–1) and most activated carbons (usually lower than 250 F ⋅ g–1). The as-assembled supercapacitors exhibit an ultrahigh capacitance of 297 F ⋅ g−1 at 1 A ⋅ g−1, remarkable energy density (14.83 Wh ⋅ kg−1 at 0.60 kW ⋅ kg−1), and extremely high stability, with 100% capacitance retention for up to 65,000 cycles at 6 A ⋅ g−1, representing their superior energy storage performance when compared with that of state-of-the-art supercapacitors of commercial activated carbons and biomass-derived analogs.


2015 ◽  
Vol 3 (5) ◽  
pp. 1828-1832 ◽  
Author(s):  
Yingjie Wu ◽  
Guohua Gao ◽  
Guangming Wu

A self-assembled three-dimensional hierarchical porous V2O5/graphene hybrid aerogel for high-performance supercapacitor was synthesized.


Sign in / Sign up

Export Citation Format

Share Document