scholarly journals Discovery of a hypersaline subglacial lake complex beneath Devon Ice Cap, Canadian Arctic

2018 ◽  
Vol 4 (4) ◽  
pp. eaar4353 ◽  
Author(s):  
Anja Rutishauser ◽  
Donald D. Blankenship ◽  
Martin Sharp ◽  
Mark L. Skidmore ◽  
Jamin S. Greenbaum ◽  
...  

2021 ◽  
Author(s):  
Anja Rutishauser ◽  
Donald D. Blankenship ◽  
Duncan A. Young ◽  
Natalie S. Wolfenbarger ◽  
Lucas H. Beem ◽  
...  

Abstract. Prior geophysical surveys provided evidence for a hypersaline subglacial lake complex beneath the center of Devon Ice Cap, Canadian Arctic; however, the full extent and characteristics of the hydrological system remained unknown due to limited data coverage. Here, we present results from a new, targeted aerogeophysical survey that provides evidence (i) supporting the existence of a subglacial lake complex and (ii) for a network of shallow brine/saturated sediments covering ~170 km2. Newly resolved lake shorelines indicate three closely spaced lakes covering a total area of 24.6 km2. These results indicate the presence of a diverse hypersaline subglacial hydrological environment with the potential to support a range of microbial habitats, provide important constraints for future investigations of this compelling scientific target, and highlight its relevance as a terrestrial analog for aqueous systems on other icy worlds.



2007 ◽  
Vol 46 ◽  
pp. 249-254 ◽  
Author(s):  
Andrew Shepherd ◽  
Zhijun Du ◽  
Toby J. Benham ◽  
Julian A. Dowdeswell ◽  
Elizabeth M. Morris

AbstractInterferometric synthetic aperture radar data show that Devon Ice Cap (DIC), northern Canada, is drained through a network of 11 glacier systems. More than half of all ice discharge is through broad flows that converge to the southeast of the ice cap, and these are grounded well below sea level at their termini. A calculation of the ice-cap mass budget reveals that the northwestern sector of DIC is gaining mass and that all other sectors are losing mass. We estimate that a 12 489 km2 section of the main ice cap receives 3.46±0.65 Gt of snowfall each year, and loses 3.11±0.21 Gt of water through runoff, and 1.43±0.03 Gt of ice through glacier discharge. Altogether, the net mass balance of DIC is –1.08±0.67 Gt a–1. This loss corresponds to a 0.003 mma–1 contribution to global sea levels, and is about half the magnitude of earlier estimates.



2016 ◽  
Author(s):  
Simon L. Pendleton ◽  
◽  
Gifford H. Miller ◽  
Robert S. Anderson ◽  
Sarah E. Crump


2015 ◽  
Vol 9 (3) ◽  
pp. 2821-2865 ◽  
Author(s):  
L. Gray ◽  
D. Burgess ◽  
L. Copland ◽  
M. N. Demuth ◽  
T. Dunse ◽  
...  

Abstract. We show that the CryoSat-2 radar altimeter can provide useful estimates of surface elevation change on a variety of Arctic ice caps, on both monthly and yearly time scales. Changing conditions, however, can lead to a varying bias between the elevation estimated from the radar altimeter and the physical surface due to changes in the contribution of subsurface to surface backscatter. Under melting conditions the radar returns are predominantly from the surface so that if surface melt is extensive across the ice cap estimates of summer elevation loss can be made with the frequent coverage provided by CryoSat-2. For example, the average summer elevation decreases on the Barnes Ice Cap, Baffin Island, Canada were 2.05 ± 0.36 m (2011), 2.55 ± 0.32 m (2012), 1.38 ± 0.40 m (2013) and 1.44 ± 0.37 m (2014), losses which were not balanced by the winter snow accumulation. As winter-to-winter conditions were similar, the net elevation losses were 1.0 ± 0.2 m (winter 2010/2011 to winter 2011/2012), 1.39 ± 0.2 m (2011/2012 to 2012/2013) and 0.36 ± 0.2 m (2012/2013 to 2013/2014); for a total surface elevation loss of 2.75 ± 0.2 m over this 3 year period. In contrast, the uncertainty in height change results from Devon Ice Cap, Canada, and Austfonna, Svalbard, can be up to twice as large because of the presence of firn and the possibility of a varying bias between the true surface and the detected elevation due to changing year-to-year conditions. Nevertheless, the surface elevation change estimates from CryoSat for both ice caps are consistent with field and meteorological measurements. For example, the average 3 year elevation difference for footprints within 100 m of a repeated surface GPS track on Austfonna differed from the GPS change by 0.18 m.



1998 ◽  
Vol 126 (6) ◽  
pp. 1741-1745 ◽  
Author(s):  
Hisashi Ozawa ◽  
Kumiko Goto-Azuma ◽  
Koyuru Iwanami ◽  
Roy M. Koerner
Keyword(s):  
Ice Cap ◽  


2013 ◽  
Vol 7 (6) ◽  
pp. 1857-1867 ◽  
Author(s):  
L. Gray ◽  
D. Burgess ◽  
L. Copland ◽  
R. Cullen ◽  
N. Galin ◽  
...  

Abstract. We have derived digital elevation models (DEMs) over the western part of the Devon Ice Cap in Nunavut, Canada, using "swath processing" of interferometric data collected by Cryosat between February 2011 and January 2012. With the standard ESA (European Space Agency) SARIn (synthetic aperture radar interferometry) level 2 (L2) data product, the interferometric mode is used to map the cross-track position and elevation of the "point-of-closest-approach" (POCA) in sloping glacial terrain. However, in this work we explore the extent to which the phase of the returns in the intermediate L1b product can also be used to map the heights of time-delayed footprints beyond the POCA. We show that there is a range of average cross-track slopes (~ 0.5 to ~ 2°) for which the returns will be dominated by those beneath the satellite in the main beam of the antenna so that the resulting interferometric phase allows mapping of heights in the delayed range window beyond the POCA. In this way a swath of elevation data is mapped, allowing the creation of DEMs from a sequence of L1b SARIn Cryosat data takes. Comparison of the Devon results with airborne scanning laser data showed a mean difference of order 1 m with a standard deviation of about 1 m. The limitations of swath processing, which generates almost 2 orders of magnitude more data than traditional radar altimetry, are explored through simulation, and the strengths and weaknesses of the technique are discussed.



2018 ◽  
Vol 18 (16) ◽  
pp. 12345-12361 ◽  
Author(s):  
Christian M. Zdanowicz ◽  
Bernadette C. Proemse ◽  
Ross Edwards ◽  
Wang Feiteng ◽  
Chad M. Hogan ◽  
...  

Abstract. Black carbon aerosol (BC), which is emitted from natural and anthropogenic sources (e.g., wildfires, coal burning), can contribute to magnify climate warming at high latitudes by darkening snow- and ice-covered surfaces, and subsequently lowering their albedo. Therefore, modeling the atmospheric transport and deposition of BC to the Arctic is important, and historical archives of BC accumulation in polar ice can help to validate such modeling efforts. Here we present a > 250-year ice-core record of refractory BC (rBC) deposition on Devon ice cap, Canada, spanning the years from 1735 to 1992. This is the first such record ever developed from the Canadian Arctic. The estimated mean deposition flux of rBC on Devon ice cap for 1963–1990 is 0.2 mg m−2 a−1, which is at the low end of estimates from Greenland ice cores obtained using the same analytical method ( ∼ 0.1–4 mg m−2 a−1). The Devon ice cap rBC record also differs from the Greenland records in that it shows only a modest increase in rBC deposition during the 20th century. In the Greenland records a pronounced rise in rBC is observed from the 1880s to the 1910s, which is largely attributed to midlatitude coal burning emissions. The deposition of contaminants such as sulfate and lead increased on Devon ice cap in the 20th century but no concomitant rise in rBC is recorded in the ice. Part of the difference with Greenland could be due to local factors such as melt–freeze cycles on Devon ice cap that may limit the detection sensitivity of rBC analyses in melt-impacted core samples, and wind scouring of winter snow at the coring site. Air back-trajectory analyses also suggest that Devon ice cap receives BC from more distant North American and Eurasian sources than Greenland, and aerosol mixing and removal during long-range transport over the Arctic Ocean likely masks some of the specific BC source–receptor relationships. Findings from this study suggest that there could be a large variability in BC aerosol deposition across the Arctic region arising from different transport patterns. This variability needs to be accounted for when estimating the large-scale albedo lowering effect of BC deposition on Arctic snow/ice.



1965 ◽  
Vol 5 (40) ◽  
pp. 489-496 ◽  
Author(s):  
R. D. Hyndman

Abstract Gravity measurements have been used to determine ice thicknesses across the western part of the Devon Island ice cap in the Canadian Arctic. A detailed profile of the ice-cap edge and a profile across an adjoining glacier are also given. The ice cap has been found to have a largely rock core with ice thicknesses generally less than 500 m. A deep valley has been found in the bedrock beneath the ice cap some 15 km. from the start of a draining glacier. The measured depths on the ice cap should be within 15 per cent and those on the glacier within 20 per cent of the true values.



2000 ◽  
Vol 46 (152) ◽  
pp. 35-40 ◽  
Author(s):  
Thomas G. Kotzer ◽  
Akira Kudo ◽  
James Zheng ◽  
Wayne Workman

AbstractNumerous studies of the ice caps in Greenland and Antarctica have observed accumulations of transuranic radionuclides and fission products from nuclear weapons testing, particularly during the period 1945–75. Recently, the concentrations of radionuclides in the annually deposited surface layers of Agassiz Ice Cap, Ellesmere Island, Canadian Arctic, from 1945 to the present have been measured and have demonstrated a continuous record of deposition of 137Cs and 239,240Pu in ice and snow. In this study, 3He-ingrowth mass spectrometry has been used to measure the low levels of tritium (3H) in some of these samples. Pre-nuclear-bomb tritium levels in ice-core samples were approximately 12 TU in high-latitude meteoric waters and 3–9 TU in mid-latitude meteoric waters. Comparisons of 3H levels and 3H/137Cs + 239,240Pu ratios, which were quite low during the earliest fission-bomb detonations (1946–51) and substantially higher during thermonuclear hydrogen-fusion bomb testing (1952–64), provide a clear indication of the type of nuclear device detonated. This finding accords with the results from other ice-core studies of the distribution of anthropogenic radionuclides from bomb fallout.



1993 ◽  
Vol 17 (2) ◽  
pp. 223-247 ◽  
Author(s):  
Arthur S. Dyke

Uplands of the Canadian Arctic Islands supported Late Wisconsinan ice caps that developed two landscape zones reflecting basal thermal conditions regulated by long-sustained ice flow patterns. Central cold-based zones protected older glacial and preglacial landscapes while peripheral warm-based zones scoured and otherwise altered their beds. Some geomorphic effects are independent of ice cap scale, others vary with scale. For ice caps of 30 km radius or more, scour-zone width remains proportionally constant to flowline length under similar flow conditions. But intensity of scouring, ice moulding of drift and rock eminences, size and abundance of subglacial meltwater features, and development of end moraines increase with ice cap size. Ice caps became entirely cold based early in retreat as the boundary between warm and cold ice shifted outward, probably because ice thinned and flow slackened. The frozen margins deflected meltwater, thus maximizing formation of lateral meltwater channels throughout retreat. The landform record of cold-based glaciers in this region is easily interpreted. Hence, regional ice sheet models invoking or based on the premise that cold-based ice leaves no geomorphic record seem untenable.



Sign in / Sign up

Export Citation Format

Share Document