scholarly journals Strong future increases in Arctic precipitation variability linked to poleward moisture transport

2020 ◽  
Vol 6 (7) ◽  
pp. eaax6869 ◽  
Author(s):  
R. Bintanja ◽  
K. van der Wiel ◽  
E. C. van der Linden ◽  
J. Reusen ◽  
L. Bogerd ◽  
...  

The Arctic region is projected to experience amplified warming as well as strongly increasing precipitation rates. Equally important to trends in the mean climate are changes in interannual variability, but changes in precipitation fluctuations are highly uncertain and the associated processes are unknown. Here, we use various state-of-the-art global climate model simulations to show that interannual variability of Arctic precipitation will likely increase markedly (up to 40% over the 21st century), especially in summer. This can be attributed to increased poleward atmospheric moisture transport variability associated with enhanced moisture content, possibly modulated by atmospheric dynamics. Because both the means and variability of Arctic precipitation will increase, years/seasons with excessive precipitation will occur more often, as will the associated impacts.

2020 ◽  
Author(s):  
Richard Bintanja ◽  
Karin van der Wiel ◽  
Eveline van der Linden ◽  
Jesse Reusen ◽  
Linda Bogerd ◽  
...  

<p>The Arctic region is projected to experience amplified warming as well as strongly increasing precipitation rates. Equally important to trends in the mean climate are changes in interannual variability, but changes in precipitation fluctuations are highly uncertain and the associated processes unknown. Here we use various state-of-the-art global climate model simulations to show that interannual variability of Arctic precipitation will likely increase markedly (up to 40% over the 21<sup>st</sup> century), especially in summer. This can be attributed to increased poleward atmospheric moisture transport variability associated with enhanced moisture content, possibly modulated by atmospheric dynamics. Because both the means and variability of Arctic precipitation will increase, years/seasons with excessive precipitation will occur more often, as will the associated impacts.</p>


2014 ◽  
Vol 119 (13) ◽  
pp. 8169-8188 ◽  
Author(s):  
Paul Glantz ◽  
Adam Bourassa ◽  
Andreas Herber ◽  
Trond Iversen ◽  
Johannes Karlsson ◽  
...  

2021 ◽  
pp. 1-43
Author(s):  
Weina Guan ◽  
Xianan Jiang ◽  
Xuejuan Ren ◽  
Gang Chen ◽  
Qinghua Ding

AbstractThe leading interannual mode of winter surface air temperature over the North American (NA) sector, characterized by a “Warm Arctic, Cold Continents” (WACC) pattern, exerts pronounced influences on NA weather and climate, while its underlying mechanisms remain elusive. In this study, the relative roles of surface boundary forcing versus internal atmospheric processes for the formation of the WACC pattern are quantitatively investigated using a combined analysis of observations and large-ensemble atmospheric global climate model simulations. Internal atmospheric variability is found to play an important role in shaping the year-to-year WACC variability, contributing to about half of the total variance. An anomalous SST pattern resembling the North Pacific Mode is identified as a major surface boundary forcing pattern in driving the interannual WACC variability over the NA sector, with a minor contribution from sea ice variability over the Chukchi- Bering Seas. Findings from this study not only lead to improved understanding of underlying physics regulating the interannual WACC variability, but also provide important guidance for improved modeling and prediction of regional climate variability over NA and the Arctic region.


2015 ◽  
Vol 28 (20) ◽  
pp. 8093-8108 ◽  
Author(s):  
Cathryn E. Birch ◽  
Malcolm J. Roberts ◽  
Luis Garcia-Carreras ◽  
Duncan Ackerley ◽  
Michael J. Reeder ◽  
...  

Abstract There are some long-established biases in atmospheric models that originate from the representation of tropical convection. Previously, it has been difficult to separate cause and effect because errors are often the result of a number of interacting biases. Recently, researchers have gained the ability to run multiyear global climate model simulations with grid spacings small enough to switch the convective parameterization off, which permits the convection to develop explicitly. There are clear improvements to the initiation of convective storms and the diurnal cycle of rainfall in the convection-permitting simulations, which enables a new process-study approach to model bias identification. In this study, multiyear global atmosphere-only climate simulations with and without convective parameterization are undertaken with the Met Office Unified Model and are analyzed over the Maritime Continent region, where convergence from sea-breeze circulations is key for convection initiation. The analysis shows that, although the simulation with parameterized convection is able to reproduce the key rain-forming sea-breeze circulation, the parameterization is not able to respond realistically to the circulation. A feedback of errors also occurs: the convective parameterization causes rain to fall in the early morning, which cools and wets the boundary layer, reducing the land–sea temperature contrast and weakening the sea breeze. This is, however, an effect of the convective bias, rather than a cause of it. Improvements to how and when convection schemes trigger convection will improve both the timing and location of tropical rainfall and representation of sea-breeze circulations.


2017 ◽  
Vol 114 (6) ◽  
pp. 1258-1263 ◽  
Author(s):  
J. David Neelin ◽  
Sandeep Sahany ◽  
Samuel N. Stechmann ◽  
Diana N. Bernstein

Precipitation accumulations, integrated over rainfall events, can be affected by both intensity and duration of the storm event. Thus, although precipitation intensity is widely projected to increase under global warming, a clear framework for predicting accumulation changes has been lacking, despite the importance of accumulations for societal impacts. Theory for changes in the probability density function (pdf) of precipitation accumulations is presented with an evaluation of these changes in global climate model simulations. We show that a simple set of conditions implies roughly exponential increases in the frequency of the very largest accumulations above a physical cutoff scale, increasing with event size. The pdf exhibits an approximately power-law range where probability density drops slowly with each order of magnitude size increase, up to a cutoff at large accumulations that limits the largest events experienced in current climate. The theory predicts that the cutoff scale, controlled by the interplay of moisture convergence variance and precipitation loss, tends to increase under global warming. Thus, precisely the large accumulations above the cutoff that are currently rare will exhibit increases in the warmer climate as this cutoff is extended. This indeed occurs in the full climate model, with a 3 °C end-of-century global-average warming yielding regional increases of hundreds of percent to >1,000% in the probability density of the largest accumulations that have historical precedents. The probabilities of unprecedented accumulations are also consistent with the extension of the cutoff.


2021 ◽  
Author(s):  
Elin Lundstad ◽  
Yuri Brugnera ◽  
Stefan Brönnimann

<p>This work describes the compilation of global instrumental climate data with a focus on the 18th and early 19th centuries. This database provides early instrumental data recovered for thousands of locations around the world. Instrumental meteorological measurements from periods prior to the start of national weather services are designated “early instrumental data”. Much of the data is taken from repositories we know (GHCN, ISTI, CRUTEM, Berkeley Earth, HISTALP). In addition, many of these stations have not been digitized before. Therefore,  we provide a new global collection of monthly averages of multivariable meteorological parameters before 1890 based on land-based meteorological station data. The product will be form as the most comprehensive global monthly climate data set, encompassing temperature, pressure, and precipitation as ever done. These data will be quality controlled and analyzed with respect to climate variability and they be assimilated into global climate model simulations to provide monthly global reconstructions. The collection has resulted in a completely new database that is uniform, where no interpolations are included. Therefore, we are left with climate reconstruction that becomes very authentic. This compilation will describe the procedure and various challenges we have encountered by creating a unified database that can later be used for e.g. models. It will also describe the strategy for quality control that has been adopted is a sequence of tests.</p>


2021 ◽  
pp. 1-47

Abstract Key processes associated with the leading intraseasonal variability mode of wintertime surface air temperature (SAT) over Eurasia and the Arctic region are investigated in this study. Characterized by a dipole distribution in SAT anomalies centered over north Eurasia and the Arctic, respectively, and coherent temperature anomalies vertically extending from the surface to 300hPa, this leading intraseasonal SAT mode and associated circulation have pronounced influences on global surface temperature anomalies including the East Asian winter monsoon region. By taking advantage of realistic simulations of the intraseasonal SAT mode in a global climate model, it is illustrated that temperature anomalies in the troposphere associated with the leading SAT mode are mainly due to dynamic processes, especially via the horizontal advection of winter mean temperature by intraseasonal circulation. While the cloud-radiative feedback is not critical in sustaining the temperature variability in the troposphere, it is found to play a crucial role in coupling temperature anomalies at the surface and in the free-atmosphere through anomalous surface downward longwave radiation. The variability in clouds associated with the intraseasonal SAT mode is closely linked to moisture anomalies generated by similar advective processes as for temperature anomalies. Model experiments suggest that this leading intraseasonal SAT mode can be sustained by internal atmospheric processes in the troposphere over the mid-to-high latitudes by excluding forcings from Arctic sea ice variability, tropical convective variability, and the stratospheric processes.


1997 ◽  
Vol 14 (4) ◽  
pp. 554-562 ◽  
Author(s):  
Wang Huijun ◽  
Xue Feng ◽  
Bi Xunqiang

2007 ◽  
Vol 20 (24) ◽  
pp. 5946-5961 ◽  
Author(s):  
Jan Sedlacek ◽  
Jean-François Lemieux ◽  
Lawrence A. Mysak ◽  
L. Bruno Tremblay ◽  
David M. Holland

Abstract The granular sea ice model (GRAN) from Tremblay and Mysak is converted from Cartesian to spherical coordinates. In this conversion, the metric terms in the divergence of the deviatoric stress and in the strain rates are included. As an application, the GRAN is coupled to the global Earth System Climate Model from the University of Victoria. The sea ice model is validated against standard datasets. The sea ice volume and area exported through Fram Strait agree well with values obtained from in situ and satellite-derived estimates. The sea ice velocity in the interior Arctic agrees well with buoy drift data. The thermodynamic behavior of the sea ice model over a seasonal cycle at one location in the Beaufort Sea is validated against the Surface Heat Budget of the Arctic Ocean (SHEBA) datasets. The thermodynamic growth rate in the model is almost twice as large as the observed growth rate, and the melt rate is 25% lower than observed. The larger growth rate is due to thinner ice at the beginning of the SHEBA period and the absence of internal heat storage in the ice layer in the model. The simulated lower summer melt is due to the smaller-than-observed surface melt.


2016 ◽  
Vol 29 (18) ◽  
pp. 6765-6782 ◽  
Author(s):  
Hansi K. A. Singh ◽  
Cecilia M. Bitz ◽  
Aaron Donohoe ◽  
Jesse Nusbaumer ◽  
David C. Noone

Abstract The aerial hydrological cycle response to CO2 doubling from a Lagrangian, rather than Eulerian, perspective is evaluated using information from numerical water tracers implemented in a global climate model. While increased surface evaporation (both local and remote) increases precipitation globally, changes in transport are necessary to create a spatial pattern where precipitation decreases in the subtropics and increases substantially at the equator. Overall, changes in the convergence of remotely evaporated moisture are more important to the overall precipitation change than changes in the amount of locally evaporated moisture that precipitates in situ. It is found that CO2 doubling increases the fraction of locally evaporated moisture that is exported, enhances moisture exchange between ocean basins, and shifts moisture convergence within a given basin toward greater distances between moisture source (evaporation) and sink (precipitation) regions. These changes can be understood in terms of the increased residence time of water in the atmosphere with CO2 doubling, which corresponds to an increase in the advective length scale of moisture transport. As a result, the distance between where moisture evaporates and where it precipitates increases. Analyses of several heuristic models further support this finding.


Sign in / Sign up

Export Citation Format

Share Document