scholarly journals Multidimensional entanglement transport through single-mode fiber

2020 ◽  
Vol 6 (4) ◽  
pp. eaay0837 ◽  
Author(s):  
Jun Liu ◽  
Isaac Nape ◽  
Qainke Wang ◽  
Adam Vallés ◽  
Jian Wang ◽  
...  

The global quantum network requires the distribution of entangled states over long distances, with substantial advances already demonstrated using polarization. While Hilbert spaces with higher dimensionality, e.g., spatial modes of light, allow higher information capacity per photon, such spatial mode entanglement transport requires custom multimode fiber and is limited by decoherence-induced mode coupling. Here, we circumvent this by transporting multidimensional entangled states down conventional single-mode fiber (SMF). By entangling the spin-orbit degrees of freedom of a biphoton pair, passing the polarization (spin) photon down the SMF while accessing multiple orbital angular momentum (orbital) subspaces with the other, we realize multidimensional entanglement transport. We show high-fidelity hybrid entanglement preservation down 250 m SMF across multiple 2 × 2 dimensions, confirmed by quantum state tomography, Bell violation measures, and a quantum eraser scheme. This work offers an alternative approach to spatial mode entanglement transport that facilitates deployment in legacy networks across conventional fiber.

2003 ◽  
Vol 3 (4) ◽  
pp. 281-306
Author(s):  
M. Keyl ◽  
D. Schlingemann ◽  
R.F. Werner

For states in infinite dimensional Hilbert spaces entanglement quantities like the entanglement of distillation can become infinite. This leads naturally to the question, whether one system in such an infinitely entangled state can serve as a resource for tasks like the teleportation of arbitrarily many qubits. We show that appropriate states cannot be obtained by density operators in an infinite dimensional Hilbert space. However, using techniques for the description of infinitely many degrees of freedom from field theory and statistical mechanics, such states can nevertheless be constructed rigorously. We explore two related possibilities, namely an extended notion of algebras of observables, and the use of singular states on the algebra of bounded operators. As applications we construct the essentially unique infinite analogue of maximally entangled states, and the singular state used heuristically in the fundamental paper of Einstein, Rosen and Podolsky.


Author(s):  
Isaac Nape ◽  
Jun Liu ◽  
Qianke Wang ◽  
Adam Valles ◽  
Jian Wang ◽  
...  

2005 ◽  
Vol 17 (12) ◽  
pp. 2631-2633 ◽  
Author(s):  
Sang Hoon Lee ◽  
Kwang Yong Song ◽  
Byoung Yoon Kim

2019 ◽  
Vol 9 (16) ◽  
pp. 3296
Author(s):  
Yongkai Liu ◽  
Jianli Wang ◽  
Lie Ma ◽  
Shijie Gao ◽  
Chenzi Guo ◽  
...  

In this study, Zernike polynomials and optical fiber field theory are applied to build a mathematical model of coupling efficiency (CE) and spatial mode of aberrations. The theory built in this paper can be used to quickly calculate the CE affected by a single aberration as well as the aberrations caused by atmospheric turbulence. The aberrations are classified based on Zernike polynomials and the effects of aberrations on CE of different types and different spatial frequencies are analyzed. The influence of the effects of AO system residual errors is also analyzed. Adaptive optics (AO) equipment is applied to build a system on which the proposed theory was tested; the experimental results validate the theoretical analysis.


1995 ◽  
Vol 20 (10) ◽  
pp. 1125 ◽  
Author(s):  
Arthur Chiou ◽  
Pochi Yeh ◽  
Claire Gu ◽  
Changxi Yang

2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Zhaolun Liu ◽  
Chunlan Zhang ◽  
Yuwei Qu

An all-solid dispersion-compensating photonic crystal fiber based on mode coupling mechanism in dual-concentric core has been proposed. The mode coupling characteristics, dispersion, confinement loss of the fiber, and the influence on dispersion of some structure parameters are simulated by full-vector finite element method. By using the relationship between phase matching wavelengths and coupling strength with the change of fiber microstructure parameters, an all-solid dual-concentric-core dispersion-compensating photonic crystal fiber is presented. The structure parameters on dispersion characteristic are investigated. The results demonstrate that the proposed fiber has a large negative dispersion value 8465 ps/(nm·km) at 1550 nm. The effective mode area and the splicing loss to the standard single mode fiber are 12.8 μm2 and 1.89 dB at 1550 nm, respectively. At 1550 nm, the confinement loss is less than 1 × 10−3 dB/km and the bending loss with 2 cm bending diameter is less than 1 × 10−2 dB/km.


Sign in / Sign up

Export Citation Format

Share Document