scholarly journals One-dimensional hexagonal boron nitride conducting channel

2020 ◽  
Vol 6 (10) ◽  
pp. eaay4958 ◽  
Author(s):  
Hyo Ju Park ◽  
Janghwan Cha ◽  
Min Choi ◽  
Jung Hwa Kim ◽  
Roland Yingjie Tay ◽  
...  

Hexagonal boron nitride (hBN) is an insulating two-dimensional (2D) material with a large bandgap. Although known for its interfacing with other 2D materials and structural similarities to graphene, the potential use of hBN in 2D electronics is limited by its insulating nature. Here, we report atomically sharp twin boundaries at AA′/AB stacking boundaries in chemical vapor deposition–synthesized few-layer hBN. We find that the twin boundary is composed of a 6′6′ configuration, showing conducting feature with a zero bandgap. Furthermore, the formation mechanism of the atomically sharp twin boundaries is suggested by an analogy with stacking combinations of AA′/AB based on the observations of extended Klein edges at the layer boundaries of AB-stacked hBN. The atomically sharp AA′/AB stacking boundary is promising as an ultimate 1D electron channel embedded in insulating pristine hBN. This study will provide insights into the fabrication of single-hBN electronic devices.

Nanoscale ◽  
2019 ◽  
Vol 11 (28) ◽  
pp. 13366-13376 ◽  
Author(s):  
Zhong-Qiang Liu ◽  
Jichen Dong ◽  
Feng Ding

In the initial stages of chemical vapor deposition on a Cu(111) surface, one-dimensional Bn–1Nn (N-rich environment) or BnNn–1 (B-rich) chains first appear, and they transform to two-dimensional sp2 networks or h-BN islands at a critical size of 13.


2D Materials ◽  
2017 ◽  
Vol 4 (2) ◽  
pp. 025117 ◽  
Author(s):  
Ariel Ismach ◽  
Harry Chou ◽  
Patrick Mende ◽  
Andrei Dolocan ◽  
Rafik Addou ◽  
...  

1991 ◽  
Vol 6 (11) ◽  
pp. 2393-2396 ◽  
Author(s):  
Vladimir Pavlović ◽  
Horst-Rainer Kötter ◽  
Christoph Meixner

Chemical vapor deposition (CVD) of boron nitride (BN) is most readily performed using BCl3 and NH3, which are brought into the deposition zone through two separate tubes. This causes some problems: inadequate mixing leading to a nonuniform deposit, formation of solid intermediates, etc. To avoid these problems, the process was performed by mixing BCl3 and NH3 at elevated temperatures (120–220 °C) prior to entering the deposition zone. The reaction between them took place by the forming of volatile stoichiometric B–N compounds (trichloroborazine and iminochloroborane), which were then transported through a single tube into a deposition zone. The resulting deposit was found to be hexagonal boron nitride.


Nano Letters ◽  
2010 ◽  
Vol 10 (10) ◽  
pp. 4134-4139 ◽  
Author(s):  
Yumeng Shi ◽  
Christoph Hamsen ◽  
Xiaoting Jia ◽  
Ki Kang Kim ◽  
Alfonso Reina ◽  
...  

2019 ◽  
Vol 2 (5) ◽  
pp. 2830-2835 ◽  
Author(s):  
Rui Han ◽  
Majharul H. Khan ◽  
Alexander Angeloski ◽  
Gilberto Casillas ◽  
Chang Won Yoon ◽  
...  

2015 ◽  
Vol 26 (27) ◽  
pp. 275601 ◽  
Author(s):  
Yao Wen ◽  
Xunzhong Shang ◽  
Ji Dong ◽  
Kai Xu ◽  
Jun He ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document