scholarly journals Unprecedented dipole alignment in α-phase nylon-11 nanowires for high-performance energy-harvesting applications

2020 ◽  
Vol 6 (24) ◽  
pp. eaay5065 ◽  
Author(s):  
Yeon Sik Choi ◽  
Sung Kyun Kim ◽  
Michael Smith ◽  
Findlay Williams ◽  
Mary E. Vickers ◽  
...  

Dipole alignment in ferroelectric polymers is routinely exploited for applications in charge-based applications. Here, we present the first experimental realization of ideally ordered dipole alignment in α-phase nylon-11 nanowires. This is an unprecedented discovery as dipole alignment is typically only ever achieved in ferroelectric polymers using an applied electric field, whereas here, we achieve dipole alignment in as-fabricated nanowires of ‘non-ferroelectric’ α-phase nylon-11, an overlooked polymorph of nylon proposed 30 years ago but never practically realized. We show that the strong hydrogen bonding in α-phase nylon-11 serves to enhance the molecular ordering, resulting in exceptional intensity and thermal stability of surface potential. This discovery has profound implications for the field of triboelectric energy harvesting, as the presence of an enhanced surface potential leads to higher mechanical energy harvesting performance. Our approach therefore paves the way towards achieving robust, high-performance mechanical energy harvesters based on this unusual ordered phase of nylon-11.

2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Chao Ye ◽  
Shaojun Dong ◽  
Jing Ren ◽  
Shengjie Ling

AbstractEnergy harvesting textiles (EHTs) have attracted much attention in wearable electronics and the internet-of-things for real-time mechanical energy harvesting associated with human activities. However, to satisfy practical application requirements, especially the demand for long-term use, it is challenging to construct an energy harvesting textile with elegant trade-off between mechanical and triboelectric performance. In this study, an energy harvesting textile was constructed using natural silk inspired hierarchical structural designs combined with rational material screening; this design strategy provides multiscale opportunities to optimize the mechanical and triboelectric performance of the final textile system. The resulting EHTs with traditional advantages of textiles showed good mechanical properties (tensile strength of 237 ± 13 MPa and toughness of 4.5 ± 0.4 MJ m−3 for single yarns), high power output (3.5 mW m−2), and excellent structural stability (99% conductivity maintained after 2.3 million multi-type cyclic deformations without severe change in appearance), exhibiting broad application prospects in integrated intelligent clothing, energy harvesting, and human-interactive interfaces.


Author(s):  
Kaushik A. Kudtarkar ◽  
Thomas W. Smith ◽  
Patricia Iglesias ◽  
Michael J. Schertzer

In the operation of many common devices and processes, more than 60% of consumed energy is wasted in many common processes. These loses come in many forms including heat, friction, and vibration. Energy harvesters are devices that can recapture some of this waste energy and convert it into electrical energy. This work will focus on electrostatic energy harvesting devices that recapture vibrational energy. Electrostatic energy harvesters recapture mechanical energy when a conductive mass translates or deforms in an electric field. Polymer ionic liquid gel beads may serve as a useful replacement for fluid droplets in electrostatic energy harvesters. This work uses a recently developed method for reliable synthesis of polymer gel beads. These beads are synthesized using a micro-reactor, which generates monomeric droplets in a silicon oil carrier fluid. The monomer solution also contains a photoinitiator and cross linker, which enables the monomer to polymerize when exposed to UV light. The present work demonstrates a method to rapidly synthesize uniform beads with a variety of chemical compositions. These chemical compositions can be used to tune the electromechanical properties of the beads to improve performance in applications such as energy harvesting devices.


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Hongjun Zhu ◽  
Tao Tang ◽  
Huohai Yang ◽  
Junlei Wang ◽  
Jinze Song ◽  
...  

Flow-induced vibration (FIV) is concerned in a broad range of engineering applications due to its resultant fatigue damage to structures. Nevertheless, such fluid-structure coupling process continuously extracts the kinetic energy from ambient fluid flow, presenting the conversion potential from the mechanical energy to electricity. As the air and water flows are widely encountered in nature, piezoelectric energy harvesters show the advantages in small-scale utilization and self-powered instruments. This paper briefly reviewed the way of energy collection by piezoelectric energy harvesters and the various measures proposed in the literature, which enhance the structural vibration response and hence improve the energy harvesting efficiency. Methods such as irregularity and alteration of cross-section of bluff body, utilization of wake flow and interference, modification and rearrangement of cantilever beams, and introduction of magnetic force are discussed. Finally, some open questions and suggestions are proposed for the future investigation of such renewable energy harvesting mode.


Low-power requirements of contemporary sensing technology attract research on alternate power sources that can replace batteries. Energy harvesters’ function as power sources for sensors and other low-power devices by transducing the ambient energy into usable electrical form. Energy harvesters absorbing the ambient vibrations that have potential to deliver uninterrupted power to sensing nodes installed in remote and vibration rich environments motivate the research in vibrational energy harvesting. Piezoelectric bimorphs have been demonstrating a pre-eminence in converting the mechanical energy in ambient vibrations into electrical energy. Improving the performance of these harvesters is pivotal, as the energy in ambient vibrations is innately low. In this paper, we propose a mechanism namely MultilayerPEHM (Piezoelectric Energy Harvester Model) which helps in converting the waste or unused energy into the useful energy. Multilayer-PEHM contains the various layer, which is placed one over the other, each layer is placed with specific element according to their properties and size, the size of the layer plays an important part for achieving efficiency. Furthermore, this paper presents an audit of the energy available in a vibrating source and design for effective transfer of the energy to harvesters, secondly, design of vibration energy harvesters with a focus to enhance their performance, and lastly, identification of key performance metrics influencing conversion efficiencies and scaling analysis for these acoustic harvesters. Typical vibration levels in stationary installations such as surfaces of blowers and ducts, and in mobile platforms such as light and heavy transport vehicles, are determined by measuring the acceleration signal. The frequency content in the signal is determined from the Fast Fourier Transform.


2019 ◽  
Vol 7 (27) ◽  
pp. 8277-8286 ◽  
Author(s):  
Thitirat Charoonsuk ◽  
Saichon Sriphan ◽  
Chanisa Nawanil ◽  
Narong Chanlek ◽  
Wanwilai Vittayakorn ◽  
...  

This research successfully demonstrated a facile, effective and scalable preparation of BaTiO3 nanowires (BT-NWs) via the template-free salt flux assisted method. High-performance lead-free flexible piezoelectric nanogenerator using BT-NWs was proposed in this work.


Soft Matter ◽  
2020 ◽  
Vol 16 (36) ◽  
pp. 8492-8505 ◽  
Author(s):  
Abhishek Sasmal ◽  
Shrabanee Sen ◽  
P. Sujatha Devi

Corona poling improved the energy storage and mechanical energy harvesting performance of PVDF–Bi0.95Ba0.05Fe0.95Zr0.05O3 composite films.


Sign in / Sign up

Export Citation Format

Share Document