scholarly journals Aerolysin nanopores decode digital information stored in tailored macromolecular analytes

2020 ◽  
Vol 6 (50) ◽  
pp. eabc2661
Author(s):  
Chan Cao ◽  
Lucien F. Krapp ◽  
Abdelaziz Al Ouahabi ◽  
Niklas F. König ◽  
Nuria Cirauqui ◽  
...  

Digital data storage is a growing need for our society and finding alternative solutions than those based on silicon or magnetic tapes is a challenge in the era of “big data.” The recent development of polymers that can store information at the molecular level has opened up new opportunities for ultrahigh density data storage, long-term archival, anticounterfeiting systems, and molecular cryptography. However, synthetic informational polymers are so far only deciphered by tandem mass spectrometry. In comparison, nanopore technology can be faster, cheaper, nondestructive and provide detection at the single-molecule level; moreover, it can be massively parallelized and miniaturized in portable devices. Here, we demonstrate the ability of engineered aerolysin nanopores to accurately read, with single-bit resolution, the digital information encoded in tailored informational polymers alone and in mixed samples, without compromising information density. These findings open promising possibilities to develop writing-reading technologies to process digital data using a biological-inspired platform.

2005 ◽  
Vol 34 (4) ◽  
Author(s):  
Robert Breslawski

With the rapid changes in technology for information creation, capture, display, distribution, storage and preservation, questions abound about the current state of microfilm and its place in the modern information management industry. Clearly there is a place for microfilm in the modern preservation vision. When it comes to information having permanent value, micrographic media remains a stalwart companion of those not willing to risk their data to the perils of digital data storage only. Quoting Jim Harvey of Altek Systems, “Now the word on the street is that without migration, degradation occurs in as little as seven years depending on storage conditions. This is an anathema to archival collections of information … Some are getting ‘that old time religion’ and backing up digital information collections with a permanent micrographic copy.”


2018 ◽  
Vol 6 (3) ◽  
pp. 359-363
Author(s):  
A. Saxena ◽  
◽  
S. Sharma ◽  
S. Dangi ◽  
A. Sharma ◽  
...  

2019 ◽  
Vol 15 (01) ◽  
pp. 1-8
Author(s):  
Ashish C Patel ◽  
C G Joshi

Current data storage technologies cannot keep pace longer with exponentially growing amounts of data through the extensive use of social networking photos and media, etc. The "digital world” with 4.4 zettabytes in 2013 has predicted it to reach 44 zettabytes by 2020. From the past 30 years, scientists and researchers have been trying to develop a robust way of storing data on a medium which is dense and ever-lasting and found DNA as the most promising storage medium. Unlike existing storage devices, DNA requires no maintenance, except the need to store at a cool and dark place. DNA has a small size with high density; just 1 gram of dry DNA can store about 455 exabytes of data. DNA stores the informations using four bases, viz., A, T, G, and C, while CDs, hard disks and other devices stores the information using 0’s and 1’s on the spiral tracks. In the DNA based storage, after binarization of digital file into the binary codes, encoding and decoding are important steps in DNA based storage system. Once the digital file is encoded, the next step is to synthesize arbitrary single-strand DNA sequences and that can be stored in the deep freeze until use.When there is a need for information to be recovered, it can be done using DNA sequencing. New generation sequencing (NGS) capable of producing sequences with very high throughput at a much lower cost about less than 0.1 USD for one MB of data than the first sequencing technologies. Post-sequencing processing includes alignment of all reads using multiple sequence alignment (MSA) algorithms to obtain different consensus sequences. The consensus sequence is decoded as the reversal of the encoding process. Most prior DNA data storage efforts sequenced and decoded the entire amount of stored digital information with no random access, but nowadays it has become possible to extract selective files (e.g., retrieving only required image from a collection) from a DNA pool using PCR-based random access. Various scientists successfully stored up to 110 zettabytes data in one gram of DNA. In the future, with an efficient encoding, error corrections, cheaper DNA synthesis,and sequencing, DNA based storage will become a practical solution for storage of exponentially growing digital data.


1998 ◽  
Author(s):  
Kai-Oliver Mueller ◽  
Cornelia Denz ◽  
Torsten Rauch ◽  
Thorsten Heimann ◽  
J. Trumpfheller ◽  
...  

2020 ◽  
Author(s):  
Filip Bošković ◽  
Alexander Ohmann ◽  
Ulrich F. Keyser ◽  
Kaikai Chen

AbstractThree-dimensional (3D) DNA nanostructures built via DNA self-assembly have established recent applications in multiplexed biosensing and storing digital information. However, a key challenge is that 3D DNA structures are not easily copied which is of vital importance for their large-scale production and for access to desired molecules by target-specific amplification. Here, we build 3D DNA structural barcodes and demonstrate the copying and random access of the barcodes from a library of molecules using a modified polymerase chain reaction (PCR). The 3D barcodes were assembled by annealing a single-stranded DNA scaffold with complementary short oligonucleotides containing 3D protrusions at defined locations. DNA nicks in these structures are ligated to facilitate barcode copying using PCR. To randomly access a target from a library of barcodes, we employ a non-complementary end in the DNA construct that serves as a barcode-specific primer template. Readout of the 3D DNA structural barcodes was performed with nanopore measurements. Our study provides a roadmap for convenient production of large quantities of self-assembled 3D DNA nanostructures. In addition, this strategy offers access to specific targets, a crucial capability for multiplexed single-molecule sensing and for DNA data storage.


Author(s):  
Huan Liu

The amounts of data become increasingly large in recent years as the capacity of digital data storage worldwide has significantly increased. As the size of data grows, the demand for data reduction increases for effective data mining. Instance selection is one of the effective means to data reduction. This article introduces basic concepts of instance selection, its context, necessity and functionality. It briefly reviews the state-of-the-art methods for instance selection. Selection is a necessity in the world surrounding us. It stems from the sheer fact of limited resources. No exception for data mining. Many factors give rise to data selection: data is not purely collected for data mining or for one particular application; there are missing data, redundant data, and errors during collection and storage; and data can be too overwhelming to handle. Instance selection is one effective approach to data selection. It is a process of choosing a subset of data to achieve the original purpose of a data mining application. The ideal outcome of instance selection is a model independent, minimum sample of data that can accomplish tasks with little or no performance deterioration.


2007 ◽  
Vol 43 (3) ◽  
pp. 1101-1111 ◽  
Author(s):  
Sebastien Tosi ◽  
Martin Power ◽  
Thomas Conway

Sign in / Sign up

Export Citation Format

Share Document