scholarly journals Heterogeneous mass distribution of the rubble-pile asteroid (101955) Bennu

2020 ◽  
Vol 6 (41) ◽  
pp. eabc3350 ◽  
Author(s):  
D. J. Scheeres ◽  
A. S. French ◽  
P. Tricarico ◽  
S. R. Chesley ◽  
Y. Takahashi ◽  
...  

The gravity field of a small body provides insight into its internal mass distribution. We used two approaches to measure the gravity field of the rubble-pile asteroid (101955) Bennu: (i) tracking and modeling the spacecraft in orbit about the asteroid and (ii) tracking and modeling pebble-sized particles naturally ejected from Bennu’s surface into sustained orbits. These approaches yield statistically consistent results up to degree and order 3, with the particle-based field being statistically significant up to degree and order 9. Comparisons with a constant-density shape model show that Bennu has a heterogeneous mass distribution. These deviations can be modeled with lower densities at Bennu’s equatorial bulge and center. The lower-density equator is consistent with recent migration and redistribution of material. The lower-density center is consistent with a past period of rapid rotation, either from a previous Yarkovsky-O’Keefe-Radzievskii-Paddack cycle or arising during Bennu’s accretion following the disruption of its parent body.

2020 ◽  
Author(s):  
Daniel Scheeres ◽  
Andrew French ◽  
Pasquale Tricarico ◽  
Steven Chesley ◽  
Yu Takahashi ◽  
...  

<p><strong>Introduction:</strong>  Estimates of asteroid (101955) Bennu’s gravity have been determined based on a series of independent solutions from different teams involved on the OSIRIS-REx mission. In addition to classical radio science techniques for estimating a body's gravity field coefficients, the discovery of particles ejected from Bennu that persist in orbit for multiple revolutions provides a unique opportunity to probe the gravity field to higher degree and order than possible by using conventional spacecraft tracking [1]. However, the non-gravitational forces acting on these particles must also be characterized, and their impact on solution accuracy must be assessed, requiring the different gravity field estimates to be compared and reconciled.</p> <p>Given the measured gravity field of Bennu, rigorous constraints on its internal density heterogeneity can be found by comparing the measured field with the constant density field computed from the asteroid shape. These results in turn provide unique insight into the global geophysical processes that drive the external and internal morphology of small rubble-pile asteroids such as Bennu.</p> <p>Finally, definitive results on the surface and close-proximity force environment of Bennu can be derived and updated from the initial analysis based on the total mass and constant density shape. Several aspects of the environment are highly sensitive to the gravity field and have changed from earlier results [2, 3, 4].</p> <p>We will present the current gravity field solutions and uncertainties, update the surface and proximity environment models, and provide the geophysical implications and interpretations of these measurements.  </p> <p><strong> </strong><strong>Geophysical Models:</strong>  The estimated gravity field solutions are compared with the constant density shape model to constrain models of the internal density variation. We find that these differences are consistent with Bennu having an under-dense core and equatorial ridge. The degree to which these are under-dense cannot be specifically constrained, but feasible ranges for these values can be determined.</p> <p>An under-dense equator could be consistent with transport of material to the equator without compaction. Given the slope transition at the Roche lobe, this would also be consistent with the ballistic transport of material into the equatorial region. Estimates of the rate of particle migration do not seem to be enough to account for the overall equatorial bulge of Bennu, however, implying that this feature could be older and not due to the more recent transport of material to the equator.</p> <p>The lower-density interior is consistent with a period of rapid spin and failure of the interior of the body [5]. This could also be consistent with the raised equatorial bulge. This interior failure could have occurred in an earlier epoch of YORP-induced rapid rotation or could trace to the initial formation of Bennu as a distinct rubble-pile body [6]. Tests of this hypothesis require additional simulations of how rubble-pile asteroids coalesce after the catastrophic disruption of their parent body. </p> <p><strong>Acknowledgements:</strong> This material is based upon work supported by NASA under Contract NNM10AA11C issued through the New Frontiers Program. Part of this research was conducted at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. We are grateful to the entire OSIRIS-REx Team for making the encounter with Bennu possible.</p> <p><strong>References:</strong> [1] Lauretta D.S. & Hergenrother C.W. et al. (2019) Science 366, eaay3544. [2] Scheeres D.J. et al. (2019) Nature Astronomy 3, 352-361. [3] Barnouin O.S. et al. 2019. Nature Geoscience 12, 247-252. [4] Tricarico P. et al. (2019) EPSC-DPS Abstract #2019-547-1. [5] Scheeres D.J. et al. (2016) Icarus 276, 116-140. [6] Michel P. et al. (2018) AGU Fall Meeting 2018 Abstract #P33C-P33850.</p> <p> </p>


2019 ◽  
Vol 490 (2) ◽  
pp. 2007-2012 ◽  
Author(s):  
X Yang ◽  
J G Yan ◽  
T Andert ◽  
M Ye ◽  
M Pätzold ◽  
...  

ABSTRACT Several close spacecraft flybys of Phobos have been performed over the past 40 yr in order to determine the gravity field of this tiny Martian moon. In this work, the second-degree coefficients of the gravity field of Phobos were derived from the radio tracking data of two combined Mars Express flybys (2010 and 2013), by applying a least squares regularized inverse technique, that introduces as an a priori the gravity field retrieved from a shape model based on constant density hypothesis. A gravitational mass estimate of $(7.0765\pm 0.0075)\times 10^5 \, \mathrm{m^3\, s}^{-2}$ and second-degree gravity coefficients C20 = −0.1378 ± 0.0348 and C22 = 0.0166 ± 0.0153(3σ) were derived. The estimated C20 value, in contrast to the value of C20 computed from the shape model under the constant density assumption, supports an inhomogeneous distribution inside Phobos at a confidence interval of 95 per cent (1.96σ). This result indicates a denser mass in the equatorial region or lighter mass in polar areas.


2018 ◽  
Vol 611 ◽  
pp. A33 ◽  
Author(s):  
N. Attree ◽  
O. Groussin ◽  
L. Jorda ◽  
D. Nébouy ◽  
N. Thomas ◽  
...  

We directly measured twenty overhanging cliffs on the surface of comet 67P/Churyumov–Gerasimenko extracted from the latest shape model and estimated the minimum tensile strengths needed to support them against collapse under the comet’s gravity. We find extremely low strengths of around 1 Pa or less (1 to 5 Pa, when scaled to a metre length). The presence of eroded material at the base of most overhangs, as well as the observed collapse of two features andthe implied previous collapse of another, suggests that they are prone to failure and that the true material strengths are close to these lower limits (although we only consider static stresses and not dynamic stress from, for example, cometary activity). Thus, a tensile strength of a few pascals is a good approximation for the tensile strength of the 67P nucleus material, which is in agreement with previous work. We find no particular trends in overhang properties either with size over the ~10–100 m range studied here or location on the nucleus. There are no obvious differences, in terms of strength, height or evidence of collapse, between the populations of overhangs on the two cometary lobes, suggesting that 67P is relatively homogenous in terms of tensile strength. Low material strengths are supportive of cometary formation as a primordial rubble pile or by collisional fragmentation of a small body (tens of km).


2010 ◽  
Vol 33 (1) ◽  
pp. 212-221 ◽  
Author(s):  
Ryan S. Park ◽  
Robert A. Werner ◽  
Shyam Bhaskaran

2021 ◽  
Vol 13 (9) ◽  
pp. 1766
Author(s):  
Igor Koch ◽  
Mathias Duwe ◽  
Jakob Flury ◽  
Akbar Shabanloui

During its science phase from 2002–2017, the low-low satellite-to-satellite tracking mission Gravity Field Recovery And Climate Experiment (GRACE) provided an insight into Earth’s time-variable gravity (TVG). The unprecedented quality of gravity field solutions from GRACE sensor data improved the understanding of mass changes in Earth’s system considerably. Monthly gravity field solutions as the main products of the GRACE mission, published by several analysis centers (ACs) from Europe, USA and China, became indispensable products for quantifying terrestrial water storage, ice sheet mass balance and sea level change. The successor mission GRACE Follow-On (GRACE-FO) was launched in May 2018 and proceeds observing Earth’s TVG. The Institute of Geodesy (IfE) at Leibniz University Hannover (LUH) is one of the most recent ACs. The purpose of this article is to give a detailed insight into the gravity field recovery processing strategy applied at LUH; to compare the obtained gravity field results to the gravity field solutions of other established ACs; and to compare the GRACE-FO performance to that of the preceding GRACE mission in terms of post-fit residuals. We use the in-house-developed MATLAB-based GRACE-SIGMA software to compute unconstrained solutions based on the generalized orbit determination of 3 h arcs. K-band range-rates (KBRR) and kinematic orbits are used as (pseudo)-observations. A comparison of the obtained solutions to the results of the GRACE-FO Science Data System (SDS) and Combination Service for Time-variable Gravity Fields (COST-G) ACs, reveals a competitive quality of our solutions. While the spectral and spatial noise levels slightly differ, the signal content of the solutions is similar among all ACs. The carried out comparison of GRACE and GRACE-FO KBRR post-fit residuals highlights an improvement of the GRACE-FO K-band ranging system performance. The overall amplitude of GRACE-FO post-fit residuals is about three times smaller, compared to GRACE. GRACE-FO post-fit residuals show less systematics, compared to GRACE. Nevertheless, the power spectral density of GRACE-FO and GRACE post-fit residuals is dominated by similar spikes located at multiples of the orbital and daily frequencies. To our knowledge, the detailed origin of these spikes and their influence on the gravity field recovery quality were not addressed in any study so far and therefore deserve further attention in the future. Presented results are based on 29 monthly gravity field solutions from June 2018 until December 2020. The regularly updated LUH-GRACE-FO-2020 time series of monthly gravity field solutions can be found on the website of the International Centre for Global Earth Models (ICGEM) and in LUH’s research data repository. These operationally published products complement the time series of the already established ACs and allow for a continuous and independent assessment of mass changes in Earth’s system.


2018 ◽  
Vol 229 ◽  
pp. 1-19 ◽  
Author(s):  
Claire I.O. Nichols ◽  
Robert Krakow ◽  
Julia Herrero-Albillos ◽  
Florian Kronast ◽  
Geraint Northwood-Smith ◽  
...  

2020 ◽  
Author(s):  
Scott Hotaling ◽  
Joanna L. Kelley ◽  
Paul B. Frandsen

AbstractAquatic insects comprise 10% of all insect diversity, can be found on every continent except Antarctica, and are key components of freshwater ecosystems. Yet aquatic insect genome biology lags dramatically behind that of terrestrial insects. If genomic effort was spread evenly, one aquatic insect genome would be sequenced for every ∼9 terrestrial insect genomes. Instead, ∼24 terrestrial insect genomes have been sequenced for every aquatic insect genome. This discrepancy is even more dramatic if the quality of genomic resources is considered; for instance, while no aquatic insect genome has been assembled to the chromosome level, 29 terrestrial insect genomes spanning four orders have. We argue that a lack of aquatic insect genomes is not due to any underlying difficulty (e.g., small body sizes or unusually large genomes) yet it is severely hampering aquatic insect research at both fundamental and applied scales. By expanding the availability of aquatic insect genomes, we will gain key insight into insect diversification and empower future research for a globally important taxonomic group.Simple SummaryAquatic insects comprise 10% of all insect diversity, can be found on every continent except Antarctica, and are key components of freshwater ecosystems. Yet aquatic insect genome biology lags dramatically behind that of terrestrial insects. If genomic effort was spread evenly, one aquatic insect genome would be sequenced for every ∼9 terrestrial insect genomes. Instead, ∼24 terrestrial insect genomes have been sequenced for every aquatic insect genome. We argue that the limited availability of aquatic insect genomes is not due to practical limitations—e.g., small body sizes or overly complex genomes—but instead reflects a lack of research interest. We call for targeted efforts to expand the availability of aquatic insect genomic resources to gain key molecular insight into insect diversification and empower future research.


2021 ◽  
Author(s):  
Alfonso Caldiero ◽  
Sébastien Le Maistre ◽  
Véronique Dehant
Keyword(s):  

2018 ◽  
Vol 620 ◽  
pp. L8 ◽  
Author(s):  
J. Hanuš ◽  
D. Vokrouhlický ◽  
M. Delbo’ ◽  
D. Farnocchia ◽  
D. Polishook ◽  
...  

Context. The recent close approach of the near-Earth asteroid (3200) Phaethon offered a rare opportunity to obtain high-quality observational data of various types. Aims. We used the newly obtained optical light curves to improve the spin and shape model of Phaethon and to determine its surface physical properties derived by thermophysical modeling. We also used the available astrometric observations of Phaethon, including those obtained by the Arecibo radar and the Gaia spacecraft, to constrain the secular drift of the orbital semimajor axis. This constraint allowed us to estimate the bulk density by assuming that the drift is dominated by the Yarkovsky effect. Methods. We used the convex inversion model to derive the spin orientation and 3D shape model of Phaethon, and a detailed numerical approach for an accurate analysis of the Yarkovsky effect. Results. We obtained a unique solution for Phaethon’s pole orientation at (318 ° , − 47 ° ) ecliptic longitude and latitude (both with an uncertainty of 5°), and confirm the previously reported thermophysical properties (D = 5.1 ± 0.2 km, Γ = 600 ± 200J m−2 s−0.5 K−1). Phaethon has a top-like shape with possible north-south asymmetry. The characteristic size of the regolith grains is 1 − 2 cm. The orbit analysis reveals a secular drift of the semimajor axis of −(6.9 ± 1.9)×10−4 au Myr−1. With the derived volume-equivalent size of 5.1 km, the bulk density is 1.67 ± 0.47 g cm−3. If the size is slightly larger ∼5.7 − 5.8 km, as suggested by radar data, the bulk density would decrease to 1.48 ± 0.42 g cm−3. We further investigated the suggestion that Phaethon may be in a cluster with asteroids (155140) 2005 UD and (225416) 1999 YC that was formed by rotational fission of a critically spinning parent body. Conclusions. Phaethon’s bulk density is consistent with typical values for large (> 100 km) C-complex asteroids and supports its association with asteroid (2) Pallas, as first suggested by dynamical modeling. These findings render a cometary origin unlikely for Phaethon.


Sign in / Sign up

Export Citation Format

Share Document