scholarly journals Targeting oncoproteins with a positive selection assay for protein degraders

2021 ◽  
Vol 7 (6) ◽  
pp. eabd6263
Author(s):  
Vidyasagar Koduri ◽  
Leslie Duplaquet ◽  
Benjamin L. Lampson ◽  
Adam C. Wang ◽  
Amin H. Sabet ◽  
...  

Most intracellular proteins lack hydrophobic pockets suitable for altering their function with drug-like small molecules. Recent studies indicate that some undruggable proteins can be targeted by compounds that can degrade them. For example, thalidomide-like drugs (IMiDs) degrade the critical multiple myeloma transcription factors IKZF1 and IKZF3 by recruiting them to the cereblon E3 ubiquitin ligase. Current loss of signal (“down”) assays for identifying degraders often exhibit poor signal-to-noise ratios, narrow dynamic ranges, and false positives from compounds that nonspecifically suppress transcription or translation. Here, we describe a gain of signal (“up”) assay for degraders. In arrayed chemical screens, we identified novel IMiD-like IKZF1 degraders and Spautin-1, which, unlike the IMiDs, degrades IKZF1 in a cereblon-independent manner. In a pooled CRISPR-Cas9–based screen, we found that CDK2 regulates the abundance of the ASCL1 oncogenic transcription factor. This methodology should facilitate the identification of drugs that directly or indirectly degrade undruggable proteins.

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. SCI-51-SCI-51
Author(s):  
Jan Krönke

Abstract Lenalidomide is a derivative of thalidomide, a drug developed in the 1950s as a sedative and treatment for morning sickness that became infamous for causing limb deformations (phocomelia) and other birth defects when used by pregnant women. Following the discovery in the 1990s that thalidomide inhibits the release of tumor necrosis factor (TNF) and blocks angiogenesis, researchers began studying thalidomide in other diseases, including cancer. Thalidomide demonstrated high in vitro activity in multiple myeloma and high response rates in clinical trials, leading to its accelerated approval by the FDA in 2006. In addition to the direct antiproliferative effects on multiple myeloma cells, thalidomide and its more potent derivatives, lenalidomide and pomalidomide, have pleiotropic effects on immune cells and are therefore called immunomodulatory drugs (IMiDs). IMiDs enhance the release of interleukin-2 (IL-2) and interferon-γ (IFN-γ) from activated T cells, inhibit the immunosuppressive activity of regulatory T cells, and increase natural killer (NK) cell-mediated cytotoxicity. In peripheral blood monocytes (PBMCs) IMiDs inhibit the release of TNF and other cytokines including interleukin-6 (IL-6), a critical growth factor for multiple myeloma cells. Recently, cereblon (CRBN) was identified as the common primary target for all IMiDs. CRBN forms an E3 ubiquitin ligase together with DNA damage-binding protein 1 (DDB1), cullin 4A (CUL4A), and regulators of cullins (ROC1) CRBN-CRL4. Interaction with this enzymatic complex has been shown to be essential for most properties of IMiDs including teratogenicity, antiproliferative effects in multiple myeloma and some of the immunomodulatory properties. More recently, it was demonstrated that lenalidomide and its analogues activate the CRBN-CRL4 E3 ligase to ubiquitinate and degrade two members of the Ikaros family of zinc finger transcription factors: Ikaros (IKZF1) and Aiolos (IKZF3). IKZF1 and IKZF3 are key regulators in lymphopoiesis and essential for lymphoid progenitor differentiation into effector cells. While IKZF1 and IKZF3 deletions and loss of function mutations are frequent in acute lymphoblastic leukemia, mature B-cell lymphomas like multiple myeloma and chronic lymphocytic leukemia have high IKZF1 and IKZF3 expression. Inactivation of IKZF1 and IKZF3 results in growth inhibition in multiple myeloma. Conversely, over-expression of IKZF1 or IKZF3 confers lenalidomide resistance, demonstrating that degradation of IKZF1 and IKZF3 is responsible for the direct cytotoxic effects of lenalidomide in multiple myeloma. One of the transcriptional targets of IKZF1 and IKZF3 is interferon regulatory factor 4 (IRF4), a transcription factor that is essential for proliferation and survival of multiple myeloma cells that is down-regulated after lenalidomide-induced degradation of IKZF1 and IKZF3. At the IL-2 locus, IKZF3 is a transcriptional repressor that is de-repressed after lenalidomide-induced degradation of IKZF3; explaining one of the immunomodulatory properties of lenalidomide. While IKZF1 and IKZF3 degradation is likely involved in the other effects of lenalidomide on T cell subsets and NK cells, it is unlikely that this accounts for all of its properties. Limb deformations, for instance, do not occur in mice with germline genetic inactivation of IKZF1 or IKZF3. Similarly, it is unlikely that degradation of the lymphoid transcription factors IKZF1 and IKZF3 accounts for the specific activity of lenalidomide in myelodysplastic syndrome with chromosome 5q deletion. Since most of these effects have been shown to depend on CRBN, it is conceivable that they result from lenalidomide-induced alteration of other substrates of the CRBN-CRL4 E3 ubiquitin ligase. Future studies aiming to identify the substrates responsible for each of the biological effects of IMiDs could enable the development of more specific drugs that modify ubiquitination of different sets of proteins with fewer side effects. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 126 (21) ◽  
pp. 2366-2369 ◽  
Author(s):  
Emma C. Fink ◽  
Benjamin L. Ebert

Abstract Lenalidomide acts by a novel drug mechanism—modulation of the substrate specificity of the CRL4CRBN E3 ubiquitin ligase. In multiple myeloma, lenalidomide induces the ubiquitination of IKZF1 and IKZF3 by CRL4CRBN. Subsequent proteasomal degradation of these transcription factors kills multiple myeloma cells. In del(5q) myelodysplastic syndrome, lenalidomide induces the degradation of CK1α, which preferentially affects del(5q) cells because they express this gene at haploinsufficient levels. In the future, modulation of ubiquitin ligase function may enable us to target previously “undruggable” proteins.


Author(s):  
Ota Fuchs

Thalidomide and its derivatives (lenalidomide, pomalidomide, avadomide, iberdomide hydrochoride, CC-885 and CC-90009) form the family of immunomodulatory drugs (IMiDs). Lenalidomide (CC5013, Revlimid®) was approved by the US FDA and the EMA for the treatment of multiple myeloma (MM) patients, low or intermediate-1 risk transfusion-dependent myelodysplastic syndrome (MDS) with chromosome 5q deletion [del(5q)] and relapsed and/or refractory mantle cell lymphoma following bortezomib. Lenalidomide has also been studied in clinical trials and has shown promising activity in chronic lymphocytic leukemia (CLL) and non-Hodgkin lymphoma (NHL). Lenalidomide has anti-inflammatory effects and inhibits angiogenesis. Pomalidomide (CC4047, Imnovid® [EU], Pomalyst® [USA]) was approved for advanced MM insensitive to bortezomib and lenalidomide. Other IMiDs are in phases 1 and 2 of clinical trials. Cereblon (CRBN) seems to have an important role in IMiDs action in both lymphoid and myeloid hematological malignancies. Cereblon acts as the substrate receptor of a cullin-4 really interesting new gene (RING) E3 ubiquitin ligase CRL4CRBN. This E3 ubiquitin ligase in the absence of lenalidomide ubiquitinates CRBN itself and the other components of CRL4CRBN complex. Presence of lenalidomide changes specificity of CRL4CRBN which ubiquitinates two transcription factors, IKZF1 (Ikaros) and IKZF3 (Aiolos), and casein kinase 1α (CK1α) and marks them for degradation in proteasomes. Both these transcription factors (IKZF1 and IKZF3) stimulate proliferation of MM cells and inhibit T cells. Low CRBN level was connected with insensitivity of MM cells to lenalidomide. Lenalidomide decreases expression of protein argonaute-2, which binds to cereblon. Argonaute-2 seems to be an important drug target against IMiDs resistance in MM cells. Lenalidomide decreases also basigin and monocarboxylate transporter 1 in MM cells. MM cells with low expression of Ikaros, Aiolos and basigin are more sensitive to lenalidomide treatment. The CK1α gene (CSNK1A1) is located on 5q32 in commonly deleted region (CDR) in del(5q) MDS. Inhibition of CK1α sensitizes del(5q) MDS cells to lenalidomide. CK1α mediates also survival of malignant plasma cells in MM. Though, inhibition of CK1α is a potential novel therapy not only in del(5q) MDS but also in MM. High level of full length CRBN mRNA in mononuclear cells of bone marrow and of peripheral blood seems to be necessary for successful therapy of del(5q) MDS with lenalidomide. While transfusion independence (TI) after lenalidomide treatment is more than 60% in MDS patients with del(5q), only 25% TI and substantially shorter duration of response with occurrence of neutropenia and thrombocytopenia were achieved in lower risk MDS patients with normal karyotype treated with lenalidomide. Shortage of the biomarkers for lenalidomide response in these MDS patients is the main problem up to now.


Haematologica ◽  
2019 ◽  
Vol 105 (5) ◽  
pp. e237-e241 ◽  
Author(s):  
Santiago Barrio ◽  
Umair Munawar ◽  
Yuan Xiao Zhu ◽  
Nicola Giesen ◽  
Chang-Xin Shi ◽  
...  

Science ◽  
2018 ◽  
Vol 362 (6414) ◽  
pp. eaat0572 ◽  
Author(s):  
Quinlan L. Sievers ◽  
Georg Petzold ◽  
Richard D. Bunker ◽  
Aline Renneville ◽  
Mikołaj Słabicki ◽  
...  

The small molecules thalidomide, lenalidomide, and pomalidomide induce the ubiquitination and proteasomal degradation of the transcription factors Ikaros (IKZF1) and Aiolos (IKZF3) by recruiting a Cys2-His2 (C2H2) zinc finger domain to Cereblon (CRBN), the substrate receptor of the CRL4CRBN E3 ubiquitin ligase. We screened the human C2H2 zinc finger proteome for degradation in the presence of thalidomide analogs, identifying 11 zinc finger degrons. Structural and functional characterization of the C2H2 zinc finger degrons demonstrates how diverse zinc finger domains bind the permissive drug-CRBN interface. Computational zinc finger docking and biochemical analysis predict that more than 150 zinc fingers bind the drug-CRBN complex in vitro, and we show that selective zinc finger degradation can be achieved through compound modifications. Our results provide a rationale for therapeutically targeting transcription factors that were previously considered undruggable.


Author(s):  
Hantao Wang ◽  
Junjie Xing ◽  
Wei Wang ◽  
Guifen Lv ◽  
Haiyan He ◽  
...  

Colorectal cancer (CRC) is one of the most commonly diagnosed and leading causes of cancer mortality worldwide, and the prognosis of patients with CRC remains unsatisfactory. Basic transcription factor 3 (BTF3) is an oncogene and hazardous prognosticator in CRC. Although two distinct functional mechanisms of BTF3 in different cancer types have been reported, its role in CRC is still unclear. In this study, we aimed to molecularly characterize the oncogene BTF3 and its targets in CRC. Here, we first identified the transcriptional targets of BTF3 by applying combined RNA-Seq and ChIP-Seq analysis, identifying CHD1L as a transcriptional target of BTF3. Thereafter, we conducted immunoprecipitation (IP)-MS and E3 ubiquitin ligase analysis to identify potential interacting targets of BTF3 as a subunit of the nascent-polypeptide-associated complex (NAC). The analysis revealed that BTF3 might also inhibit E3 ubiquitin ligase HERC2-mediated p53 degradation. Finally, miRNAs targeting BTF3 were predicted and validated. Decreased miR-497-5p expression is responsible for higher levels of BTF3 post-transcriptionally. Collectively, we concluded that BTF3 is an oncogene, and there may exist a transcription factor and NAC-related proteolysis mechanism in CRC. This study provides a comprehensive basis for understanding the oncogenic mechanisms of BTF3 in CRC.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1313-1313
Author(s):  
Christopher J. Ott ◽  
Raphael Szalat ◽  
Matthew Lawlor ◽  
Mehmet Kemal Samur ◽  
Yan Xu ◽  
...  

Abstract Multiple myeloma (MM) is a plasma cell malignancy characterized by clinical and genomic heterogeneity. Recurrent IgH translocations, copy number abnormalities and somatic mutations have been reported to participate in myelomagenesis; however no universal driver of the disease has been identified. Here, we hypothesize that transcriptional deregulation is critical for MM pathogenesis and the maintenance of the MM cell state. In order to capture signatures of transcription factor engagement with the myeloma epigenome, we performed the assay for transposase-accessible chromatin sequencing (ATAC sequencing), deep RNA sequencing in 23 primary myeloma samples and 5 normal plasma cell samples (NPC) from healthy donors along with whole genome sequencing and H3K27ac ChIP-seq in a cohort of these primary MM samples. We identified 22,603 variable accessible loci between MM and NPC and correlated impact of these on expression of associated genes using RNA-seq data. Together with robust differential analysis of open chromatin regions and nuclease-accessibility footprints to identify discrete transcription factor binding events, we have discerned the myeloma-specific open chromatin landscape, identified transcription factor dependencies and potential new myeloma drivers. In our dataset we observe a vast number of loci with heterogeneous chromatin states across the sample cohort, and the majority of the open chromatin sites identified are unique to a single sample. However, distinct variable chromatin accessibility signatures indicative of the MM chromatin state when compared to normal plasma cells were observed. Remarkably, we observed more frequent recurrent loss of variable accessible loci compared to gains. In addition, specific open chromatin profiles evident in hyperdiploid and non-hyperdiploid MM were also identified. Accessibility footprinting revealed MM-specific enrichment for transcription factors known to be essential for MM cell survival including Interferon Regulatory Factors (IRFs), Nuclear Factor Kappa B (NFkB), Ikaros, and Sp1. Interestingly, we also identify the myocyte enhancer factor 2 (MEF2) family of transcription factors as being specifically enriched in open chromatin regions in MM cells. Using a CRISPR-Cas9 knockout system, we identify the MEF2 family member MEF2C as essential for MM cell proliferation and survival. MEF2C is significantly overexpressed at the RNA level in our study as well as in several independent cohorts and is a central enhancer-localized transcription factor in MM core regulatory circuitry as determined by H3K27ac ChIP-sequencing profiles of primary MM samples. In order to evaluate MEF2C as a therapeutic target, we used small molecule inhibitors targeting MEF2C activity via inhibition of MEF2C phosphorylation using inhibitors of salt-induced kinases (SIK) and microtubule-associated protein/microtubule affinity regulating kinases (MARK). SIK/MARK have been described to specifically activate MEF2C. SIK and MARK inhibition resulted in both dose- and time-dependent inhibition of MM cell growth and survival in a panel of 12 MM cell lines with various genotypic and phenotypic characteristics, revealing a potential approach to targeting the dysregulated gene regulatory state of myeloma. To conclude, here we identify here an altered chromatin accessibility landscape in multiple myeloma that likely contributes to oncogenic transcription states through the activity of transcription factors such as MEF2C, representing a new MM dependency and potential therapeutic target. Disclosures Anderson: Millennium Takeda: Consultancy; C4 Therapeutics: Equity Ownership, Other: Scientific founder; Bristol Myers Squibb: Consultancy; Gilead: Membership on an entity's Board of Directors or advisory committees; Celgene: Consultancy; OncoPep: Equity Ownership, Other: Scientific founder. Young:Camp4 Therapeutics: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Syros Pharmaceuticals: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Omega Therapeutics: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees. Munshi:OncoPep: Other: Board of director.


Sign in / Sign up

Export Citation Format

Share Document