scholarly journals Engineered ionizable lipid nanoparticles for targeted delivery of RNA therapeutics into different types of cells in the liver

2021 ◽  
Vol 7 (9) ◽  
pp. eabf4398
Author(s):  
M. Kim ◽  
M. Jeong ◽  
S. Hur ◽  
Y. Cho ◽  
J. Park ◽  
...  

Ionizable lipid nanoparticles (LNPs) have been widely used for in vivo delivery of RNA therapeutics into the liver. However, a main challenge remains to develop LNP formulations for selective delivery of RNA into certain types of liver cells, such as hepatocytes and liver sinusoidal endothelial cells (LSECs). Here, we report the engineered LNPs for the targeted delivery of RNA into hepatocytes and LSECs. The effects of particle size and polyethylene glycol–lipid content in the LNPs were evaluated for the hepatocyte-specific delivery of mRNA by ApoE-mediated cellular uptake through low-density lipoprotein receptors. Targeted delivery of RNA to LSECs was further investigated using active ligands. Incorporation of mannose allowed the selective delivery of RNA to LSECs, while minimizing the unwanted cellular uptake by hepatocytes. These results demonstrate that engineered LNPs have great potential for the cell type–specific delivery of RNA into the liver and other tissues.

2015 ◽  
Vol 12 (4) ◽  
pp. 1230-1241 ◽  
Author(s):  
Jin-Ho Kim ◽  
Youngwook Kim ◽  
Ki Hyun Bae ◽  
Tae Gwan Park ◽  
Jung Hee Lee ◽  
...  

2021 ◽  
Author(s):  
Lisa N Kasiewicz ◽  
Souvik Biswas ◽  
Aaron Beach ◽  
Huilan Ren ◽  
Chaitali Dutta ◽  
...  

Standard lipid nanoparticles (LNPs) deliver gene editing cargoes to hepatocytes through receptor-mediated uptake via the low-density lipoprotein receptor (LDLR). Homozygous familial hypercholesterolemia (HoFH) is a morbid genetic disease characterized by complete or near-complete LDLR deficiency, markedly elevated blood low-density lipoprotein cholesterol (LDL-C) levels, and premature atherosclerotic cardiovascular disease. In order to enable in vivo liver gene editing in HoFH patients, we developed a novel LNP delivery technology that incorporates a targeting ligand - N-acetylgalactosamine (GalNAc) - which binds to the asialoglycoprotein receptor (ASGPR). In a cynomolgus monkey (Macaca fascicularis) non-human primate (NHP) model of HoFH created by somatic knockout of the LDLR gene via CRISPR-Cas9, treatment with GalNAc-LNPs formulated with an adenine base editor mRNA and a guide RNA (gRNA) targeting the ANGPTL3 gene yielded ~60% whole-liver editing and ~94% reduction of blood ANGPTL3 protein levels, whereas standard LNPs yielded minimal editing. Moreover, in wild-type NHPs, the editing achieved by GalNAc-LNPs compared favorably to that achieved by standard LNPs, suggesting that GalNAc-LNP delivery technology may prove useful across a range of in vivo therapeutic applications targeting the liver.


Circulation ◽  
1996 ◽  
Vol 94 (7) ◽  
pp. 1698-1704 ◽  
Author(s):  
Klaus Juul ◽  
Lars B. Nielsen ◽  
Klaus Munkholm ◽  
Steen Stender ◽  
Børge G. Nordestgaard

1986 ◽  
Vol 234 (1) ◽  
pp. 245-248 ◽  
Author(s):  
W Jessup ◽  
G Jurgens ◽  
J Lang ◽  
H Esterbauer ◽  
R T Dean

The incorporation of the lipid peroxidation product 4-hydroxynonenal into low-density lipoprotein (LDL) increases the negative charge of the particle, and decreases its affinity for the fibroblast LDL receptor. It is suggested that this modification may occur in vivo, and might promote atherogenesis.


1994 ◽  
Vol 35 (4) ◽  
pp. 669-677
Author(s):  
H.N. Hodis ◽  
D.M. Kramsch ◽  
P. Avogaro ◽  
G. Bittolo-Bon ◽  
G. Cazzolato ◽  
...  

2020 ◽  
Vol 61 (1) ◽  
Author(s):  
Yeh-Lin Lu ◽  
Chia-Jung Lee ◽  
Shyr-Yi Lin ◽  
Wen-Chi Hou

Abstract Background The root major proteins of sweet potato trypsin inhibitors (SPTIs) or named sporamin, estimated for 60 to 80% water-soluble proteins, exhibited many biological activities. The human low-density lipoprotein (LDL) showed to form in vivo complex with endogenous oxidized alpha-1-antitrypsin. Little is known concerning the interactions between SPTIs and LDL in vitro. Results The thiobarbituric-acid-reactive-substance (TBARS) assays were used to monitor 0.1 mM Cu2+-mediated low-density lipoprotein (LDL) oxidations during 24-h reactions with or without SPTIs additions. The protein stains in native PAGE gels were used to identify the bindings between native or reduced forms of SPTIs or soybean TIs and LDL, or oxidized LDL (oxLDL). It was found that the SPTIs additions showed to reduce LDL oxidations in the first 6-h and then gradually decreased the capacities of anti-LDL oxidations. The protein stains in native PAGE gels showed more intense LDL bands in the presence of SPTIs, and 0.5-h and 1-h reached the highest one. The SPTIs also bound to the oxLDL, and low pH condition (pH 2.0) might break the interactions revealed by HPLC. The LDL or oxLDL adsorbed onto self-prepared SPTIs-affinity column and some components were eluted by 0.2 M KCl (pH 2.0). The native or reduced SPTIs or soybean TIs showed different binding capacities toward LDL and oxLDL in vitro. Conclusion The SPTIs might be useful in developing functional foods as antioxidant and nutrient supplements, and the physiological roles of SPTIs-LDL and SPTIs-oxLDL complex in vivo will investigate further using animal models.


Sign in / Sign up

Export Citation Format

Share Document