scholarly journals Little Ice Age abruptly triggered by intrusion of Atlantic waters into the Nordic Seas

2021 ◽  
Vol 7 (51) ◽  
Author(s):  
Francois Lapointe ◽  
Raymond S. Bradley
Keyword(s):  
Ice Age ◽  
2013 ◽  
Vol 26 (19) ◽  
pp. 7586-7602 ◽  
Author(s):  
Flavio Lehner ◽  
Andreas Born ◽  
Christoph C. Raible ◽  
Thomas F. Stocker

Abstract The inception of the Little Ice Age (~1400–1700 AD) is believed to have been driven by an interplay of external forcing and climate system internal variability. While the hemispheric signal seems to have been dominated by solar irradiance and volcanic eruptions, the understanding of mechanisms shaping the climate on a continental scale is less robust. In an ensemble of transient model simulations and a new type of sensitivity experiments with artificial sea ice growth, the authors identify a sea ice–ocean–atmosphere feedback mechanism that amplifies the Little Ice Age cooling in the North Atlantic–European region and produces the temperature pattern suggested by paleoclimatic reconstructions. Initiated by increasing negative forcing, the Arctic sea ice substantially expands at the beginning of the Little Ice Age. The excess of sea ice is exported to the subpolar North Atlantic, where it melts, thereby weakening convection of the ocean. Consequently, northward ocean heat transport is reduced, reinforcing the expansion of the sea ice and the cooling of the Northern Hemisphere. In the Nordic Seas, sea surface height anomalies cause the oceanic recirculation to strengthen at the expense of the warm Barents Sea inflow, thereby further reinforcing sea ice growth. The absent ocean–atmosphere heat flux in the Barents Sea results in an amplified cooling over Northern Europe. The positive nature of this feedback mechanism enables sea ice to remain in an expanded state for decades up to a century, favoring sustained cold periods over Europe such as the Little Ice Age. Support for the feedback mechanism comes from recent proxy reconstructions around the Nordic Seas.


Author(s):  
W.P. De Lange

The Greenhouse Effect acts to slow the escape of infrared radiation to space, and hence warms the atmosphere. The oceans derive almost all of their thermal energy from the sun, and none from infrared radiation in the atmosphere. The thermal energy stored by the oceans is transported globally and released after a range of different time periods. The release of thermal energy from the oceans modifies the behaviour of atmospheric circulation, and hence varies climate. Based on ocean behaviour, New Zealand can expect weather patterns similar to those from 1890-1922 and another Little Ice Age may develop this century.


2013 ◽  
Vol 6 (1) ◽  
pp. 29-36 ◽  
Author(s):  
Anastasia Gornostayeva ◽  
◽  
Dmitry Demezhko ◽  
◽  
Keyword(s):  

2020 ◽  
Vol 42 (1) ◽  
pp. 4-12
Author(s):  
Valeriy Fedorov ◽  
Denis Frolov

Author(s):  
Greg M. Stock ◽  
◽  
Robert S. Anderson ◽  
Thomas H. Painter ◽  
Brian Henn ◽  
...  

Weather ◽  
2016 ◽  
Vol 71 (4) ◽  
pp. 100-102
Author(s):  
Gerald Stanhill
Keyword(s):  

The Holocene ◽  
2021 ◽  
pp. 095968362110116
Author(s):  
Maegen L Rochner ◽  
Karen J Heeter ◽  
Grant L Harley ◽  
Matthew F Bekker ◽  
Sally P Horn

Paleoclimate reconstructions for the western US show spatial variability in the timing, duration, and magnitude of climate changes within the Medieval Climate Anomaly (MCA, ca. 900–1350 CE) and Little Ice Age (LIA, ca. 1350–1850 CE), indicating that additional data are needed to more completely characterize late-Holocene climate change in the region. Here, we use dendrochronology to investigate how climate changes during the MCA and LIA affected a treeline, whitebark pine ( Pinus albicaulis Engelm.) ecosystem in the Greater Yellowstone Ecoregion (GYE). We present two new millennial-length tree-ring chronologies and multiple lines of tree-ring evidence from living and remnant whitebark pine and Engelmann spruce ( Picea engelmannii Parry ex. Engelm.) trees, including patterns of establishment and mortality; changes in tree growth; frost rings; and blue-intensity-based, reconstructed summer temperatures, to highlight the terminus of the LIA as one of the coldest periods of the last millennium for the GYE. Patterns of tree establishment and mortality indicate conditions favorable to recruitment during the latter half of the MCA and climate-induced mortality of trees during the middle-to-late LIA. These patterns correspond with decreased growth, frost damage, and reconstructed cooler temperature anomalies for the 1800–1850 CE period. Results provide important insight into how past climate change affected important GYE ecosystems and highlight the value of using multiple lines of proxy evidence, along with climate reconstructions of high spatial resolution, to better describe spatial and temporal variability in MCA and LIA climate and the ecological influence of climate change.


Sign in / Sign up

Export Citation Format

Share Document