RNA Exosome Depletion Reveals Transcription Upstream of Active Human Promoters

Science ◽  
2008 ◽  
Vol 322 (5909) ◽  
pp. 1851-1854 ◽  
Author(s):  
Pascal Preker ◽  
Jesper Nielsen ◽  
Susanne Kammler ◽  
Søren Lykke-Andersen ◽  
Marianne S. Christensen ◽  
...  

Studies have shown that the bulk of eukaryotic genomes is transcribed. Transcriptome maps are frequently updated, but low-abundant transcripts have probably gone unnoticed. To eliminate RNA degradation, we depleted the exonucleolytic RNA exosome from human cells and then subjected the RNA to tiling microarray analysis. This revealed a class of short, polyadenylated and highly unstable RNAs. These promoter upstream transcripts (PROMPTs) are produced ∼0.5 to 2.5 kilobases upstream of active transcription start sites. PROMPT transcription occurs in both sense and antisense directions with respect to the downstream gene. In addition, it requires the presence of the gene promoter and is positively correlated with gene activity. We propose that PROMPT transcription is a common characteristic of RNA polymerase II (RNAPII) transcribed genes with a possible regulatory potential.

2021 ◽  
Author(s):  
Georgi K. Marinov ◽  
Xinyi Chen ◽  
Tong Wu ◽  
Chuan He ◽  
Arthur R. Grossman ◽  
...  

AbstractNucleomoprhs are remnants of secondary endosymbiotic events between two eukaryote cells wherein the endosymbiont has retained its eukaryotic nucleus. Nucleomorphs have evolved at least twice independently, in chlorarachniophytes and cryptophytes, yet they have converged on a remarkably similar genomic architecture, characterized by the most extreme compression and miniaturization among all known eukaryotic genomes. Previous computational studies have suggested that nucleomorph chromatin likely exhibits a number of divergent features. In this work, we provide the first maps of open chromatin, active transcription, and three-dimensional organization for the nucleomorph genome of the chlorarachniophyte Bigelowiella natans. We find that the B. natans nucleomorph genome exists in a highly accessible state, akin to that of ribosomal DNA in some other eukaryotes, and that it is highly transcribed over its entire length, with few signs of polymerase pausing at transcription start sites (TSSs). At the same time, most nucleomorph TSSs show very strong nucleosome positioning. Chromosome conformation (Hi-C) maps reveal that nucleomorph chromosomes interact with one other at their telomeric regions, and show the relative contact frequencies between the multiple genomic compartments of distinct origin that B. natans cells contain.


2022 ◽  
Author(s):  
Edward J Banigan ◽  
Wen Tang ◽  
Aafke A van den Berg ◽  
Roman R Stocsits ◽  
Gordana Wutz ◽  
...  

Cohesin organizes mammalian interphase chromosomes by reeling chromatin fibers into dynamic loops (Banigan and Mirny, 2020; Davidson et al., 2019; Kim et al., 2019; Yatskevich et al., 2019). "Loop extrusion" is obstructed when cohesin encounters a properly oriented CTCF protein (Busslinger et al., 2017; de Wit et al., 2015; Fudenberg et al., 2016; Nora et al., 2017; Sanborn et al., 2015; Wutz et al., 2017), and recent work indicates that other factors, such as the replicative helicase MCM (Dequeker et al., 2020), can also act as barriers to loop extrusion. It has been proposed that transcription relocalizes (Busslinger et al., 2017; Glynn et al., 2004; Lengronne et al., 2004) or interferes with cohesin (Heinz et al., 2018; Jeppsson et al., 2020; Valton et al., 2021; S. Zhang et al., 2021), and that active transcription start sites function as cohesin loading sites (Busslinger et al., 2017; Kagey et al., 2010; Zhu et al., 2021; Zuin et al., 2014), but how these effects, and transcription in general, shape chromatin is unknown. To determine whether transcription can modulate loop extrusion, we studied cells in which the primary extrusion barriers could be removed by CTCF depletion and cohesin's residence time and abundance on chromatin could be increased by Wapl knockout. We found evidence that transcription directly interacts with loop extrusion through a novel "moving barrier" mechanism, but not by loading cohesin at active promoters. Hi-C experiments showed intricate, cohesin-dependent genomic contact patterns near actively transcribed genes, and in CTCF-Wapl double knockout (DKO) cells (Busslinger et al., 2017), genomic contacts were enriched between sites of transcription-driven cohesin localization ("cohesin islands"). Similar patterns also emerged in polymer simulations in which transcribing RNA polymerases (RNAPs) acted as "moving barriers" by impeding, slowing, or pushing loop-extruding cohesins. The model predicts that cohesin does not load preferentially at promoters and instead accumulates at TSSs due to the barrier function of RNAPs. We tested this prediction by new ChIP-seq experiments, which revealed that the "cohesin loader" Nipbl (Ciosk et al., 2000) co-localizes with cohesin, but, unlike in previous reports (Busslinger et al., 2017; Kagey et al., 2010; Zhu et al., 2021; Zuin et al., 2014), Nipbl did not accumulate at active promoters. We propose that RNAP acts as a new type of barrier to loop extrusion that, unlike CTCF, is not stationary in its precise genomic position, but is itself dynamically translocating and relocalizes cohesin along DNA. In this way, loop extrusion could enable translocating RNAPs to maintain contacts with distal regulatory elements, allowing transcriptional activity to shape genomic functional organization.


2020 ◽  
Vol 295 (12) ◽  
pp. 3990-4000 ◽  
Author(s):  
Sandeep Singh ◽  
Karol Szlachta ◽  
Arkadi Manukyan ◽  
Heather M. Raimer ◽  
Manikarna Dinda ◽  
...  

DNA double-stranded breaks (DSBs) are strongly associated with active transcription, and promoter-proximal pausing of RNA polymerase II (Pol II) is a critical step in transcriptional regulation. Mapping the distribution of DSBs along actively expressed genes and identifying the location of DSBs relative to pausing sites can provide mechanistic insights into transcriptional regulation. Using genome-wide DNA break mapping/sequencing techniques at single-nucleotide resolution in human cells, we found that DSBs are preferentially located around transcription start sites of highly transcribed and paused genes and that Pol II promoter-proximal pausing sites are enriched in DSBs. We observed that DSB frequency at pausing sites increases as the strength of pausing increases, regardless of whether the pausing sites are near or far from annotated transcription start sites. Inhibition of topoisomerase I and II by camptothecin and etoposide treatment, respectively, increased DSBs at the pausing sites as the concentrations of drugs increased, demonstrating the involvement of topoisomerases in DSB generation at the pausing sites. DNA breaks generated by topoisomerases are short-lived because of the religation activity of these enzymes, which these drugs inhibit; therefore, the observation of increased DSBs with increasing drug doses at pausing sites indicated active recruitment of topoisomerases to these sites. Furthermore, the enrichment and locations of DSBs at pausing sites were shared among different cell types, suggesting that Pol II promoter-proximal pausing is a common regulatory mechanism. Our findings support a model in which topoisomerases participate in Pol II promoter-proximal pausing and indicated that DSBs at pausing sites contribute to transcriptional activation.


Cell ◽  
2015 ◽  
Vol 161 (4) ◽  
pp. 879-892 ◽  
Author(s):  
Ye Fu ◽  
Guan-Zheng Luo ◽  
Kai Chen ◽  
Xin Deng ◽  
Miao Yu ◽  
...  

eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Christophe Malabat ◽  
Frank Feuerbach ◽  
Laurence Ma ◽  
Cosmin Saveanu ◽  
Alain Jacquier

Nonsense-mediated mRNA decay (NMD) is a translation-dependent RNA quality-control pathway targeting transcripts such as messenger RNAs harboring premature stop-codons or short upstream open reading frame (uORFs). Our transcription start sites (TSSs) analysis of Saccharomyces cerevisiae cells deficient for RNA degradation pathways revealed that about half of the pervasive transcripts are degraded by NMD, which provides a fail-safe mechanism to remove spurious transcripts that escaped degradation in the nucleus. Moreover, we found that the low specificity of RNA polymerase II TSSs selection generates, for 47% of the expressed genes, NMD-sensitive transcript isoforms carrying uORFs or starting downstream of the ATG START codon. Despite the low abundance of this last category of isoforms, their presence seems to constrain genomic sequences, as suggested by the significant bias against in-frame ATGs specifically found at the beginning of the corresponding genes and reflected by a depletion of methionines in the N-terminus of the encoded proteins.


2019 ◽  
Vol 47 (13) ◽  
pp. 6714-6725 ◽  
Author(s):  
Chen Chen ◽  
Jie Shu ◽  
Chenlong Li ◽  
Raj K Thapa ◽  
Vi Nguyen ◽  
...  

Abstract SPT6 is a conserved elongation factor that is associated with phosphorylated RNA polymerase II (RNAPII) during transcription. Recent transcriptome analysis in yeast mutants revealed its potential role in the control of transcription initiation at genic promoters. However, the mechanism by which this is achieved and how this is linked to elongation remains to be elucidated. Here, we present the genome-wide occupancy of Arabidopsis SPT6-like (SPT6L) and demonstrate its conserved role in facilitating RNAPII occupancy across transcribed genes. We also further demonstrate that SPT6L enrichment is unexpectedly shifted, from gene body to transcription start site (TSS), when its association with RNAPII is disrupted. Protein domains, required for proper function and enrichment of SPT6L on chromatin, are subsequently identified. Finally, our results suggest that recruitment of SPT6L at TSS is indispensable for its spreading along the gene body during transcription. These findings provide new insights into the mechanisms underlying SPT6L recruitment in transcription and shed light on the coordination between transcription initiation and elongation.


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi110-vi110
Author(s):  
Tathiane Malta ◽  
Thais Sarraf Sabedot ◽  
Carlos Carlotti jr ◽  
Houtan Noushmehr

Abstract Meningiomas are mostly benign brain tumors but have a substantial risk of recurrence, sometimes to more aggressive subtypes. Recently, a DNA methylation signature in meningioma was described as able to stratify patients by recurrence risk (favorable and unfavorable). It is well recognized that epigenetic deregulation at distinct genomic elements can affect changes in gene expression and contribute to cancer initiation and progression. Our goal for this study is to define genes that are actively expressed or repressed by both DNA methylation and chromatin histone modification (defined by H3K4me3). For this pilot study, we selected two favorable (grades I and II) and two unfavorable (grades II and III) meningioma primary tumor samples (N=4) and mapped H3K4me3 genome-wide and whole-genome DNA methylation, in an attempt to identify active transcription start sites at known promoters. After data alignment, preprocessing and peak calling, we identified 29,514 consensus peaks for H3K4me3. The differential binding analysis resulted in 5,752 H3K4me3 regions that distinguish favorable from unfavorable meningioma, mostly gain of peaks in the unfavorable group. We identified 1,505 peaks overlapping with known promoters, 51% associated with gain of peaks in the unfavorable group. Promoter-associated chromatin changes coincided with hypomethylation in 23 unique genes in the unfavorable group. Genes such as MET, PTEN, and the long non-coding RNA RP11-60L3.1 were identified as potential regulators of meningioma recurrence. Our preliminary results describe the identification of distinct genome-wide changes in chromatin associated with meningioma patient with high risk for recurrence. Identification of candidate genes will provide knowledge of the role of epigenomics in the development of malignant meningioma and of opportunities for targeted therapy.


2020 ◽  
Vol 28 (3-4) ◽  
pp. 381-393
Author(s):  
Michi Miura ◽  
Honglin Chen

AbstractCUT&RUN is a powerful tool to study protein-DNA interactions in vivo. DNA fragments cleaved by the targeted micrococcal nuclease identify the footprints of DNA-binding proteins on the chromatin. We performed CUT&RUN on human lung carcinoma cell line A549 maintained in a multi-well cell culture plate to profile RNA polymerase II. Long (> 270 bp) DNA fragments released by CUT&RUN corresponded to the bimodal peak around the transcription start sites, as previously seen with chromatin immunoprecipitation. However, we found that short (< 120 bp) fragments identify a well-defined peak localised at the transcription start sites. This distinct DNA footprint of short fragments, which constituted only about 5% of the total reads, suggests the transient positioning of RNA polymerase II before promoter-proximal pausing, which has not been detected in the physiological settings by standard chromatin immunoprecipitation. We showed that the positioning of the large-size-class DNA footprints around the short-fragment peak was associated with the directionality of transcription, demonstrating the biological significance of distinct CUT&RUN footprints of RNA polymerase II.


2007 ◽  
Vol 21 (2) ◽  
pp. 550-563 ◽  
Author(s):  
Robert K. Hall ◽  
Xiaohui L. Wang ◽  
Leena George ◽  
Stephen R. Koch ◽  
Daryl K. Granner

Abstract Insulin represses gluconeogenesis, in part, by inhibiting the transcription of genes that encode rate-determining enzymes, such as phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G-6-Pase). Glucocorticoids stimulate expression of the PEPCK gene but the repressive action of insulin is dominant. Here, we show that treatment of H4IIE hepatoma cells with the synthetic glucocorticoid, dexamethasone (dex), induces the accumulation of glucocorticoid receptor, as well as many transcription factors, coregulators, and RNA polymerase II, on the PEPCK gene promoter. The addition of insulin to dex-treated cells causes the rapid dissociation of glucocorticoid receptor, polymerase II, and several key transcriptional regulators from the PEPCK gene promoter. These changes are temporally related to the reduced rate of PEPCK gene transcription. A similar disruption of the G-6-Pase gene transcription complex was observed. Additionally, insulin causes the rapid demethylation of arginine-17 on histone H3 of both genes. This rapid, insulin-induced, histone demethylation is temporally related to the disruption of the PEPCK and G-6-Pase gene transcription complex, and may be causally related to the mechanism by which insulin represses transcription of these genes.


2008 ◽  
Vol 28 (12) ◽  
pp. 3883-3893 ◽  
Author(s):  
M. Harley Jenks ◽  
Thomas W. O'Rourke ◽  
Daniel Reines

ABSTRACT The IMD2 gene in Saccharomyces cerevisiae is regulated by intracellular guanine nucleotides. Regulation is exerted through the choice of alternative transcription start sites that results in synthesis of either an unstable short transcript terminating upstream of the start codon or a full-length productive IMD2 mRNA. Start site selection is dictated by the intracellular guanine nucleotide levels. Here we have mapped the polyadenylation sites of the upstream, unstable short transcripts that form a heterogeneous family of RNAs of ≈200 nucleotides. The switch from the upstream to downstream start sites required the Rpb9 subunit of RNA polymerase II. The enzyme's ability to locate the downstream initiation site decreased exponentially as the start was moved downstream from the TATA box. This suggests that RNA polymerase II's pincer grip is important as it slides on DNA in search of a start site. Exosome degradation of the upstream transcripts was highly dependent upon the distance between the terminator and promoter. Similarly, termination was dependent upon the Sen1 helicase when close to the promoter. These findings extend the emerging concept that distinct modes of termination by RNA polymerase II exist and that the distance of the terminator from the promoter, as well as its sequence, is important for the pathway chosen.


Sign in / Sign up

Export Citation Format

Share Document