Transcription shapes 3D chromatin organization by interacting with loop-extruding cohesin complexes

2022 ◽  
Author(s):  
Edward J Banigan ◽  
Wen Tang ◽  
Aafke A van den Berg ◽  
Roman R Stocsits ◽  
Gordana Wutz ◽  
...  

Cohesin organizes mammalian interphase chromosomes by reeling chromatin fibers into dynamic loops (Banigan and Mirny, 2020; Davidson et al., 2019; Kim et al., 2019; Yatskevich et al., 2019). "Loop extrusion" is obstructed when cohesin encounters a properly oriented CTCF protein (Busslinger et al., 2017; de Wit et al., 2015; Fudenberg et al., 2016; Nora et al., 2017; Sanborn et al., 2015; Wutz et al., 2017), and recent work indicates that other factors, such as the replicative helicase MCM (Dequeker et al., 2020), can also act as barriers to loop extrusion. It has been proposed that transcription relocalizes (Busslinger et al., 2017; Glynn et al., 2004; Lengronne et al., 2004) or interferes with cohesin (Heinz et al., 2018; Jeppsson et al., 2020; Valton et al., 2021; S. Zhang et al., 2021), and that active transcription start sites function as cohesin loading sites (Busslinger et al., 2017; Kagey et al., 2010; Zhu et al., 2021; Zuin et al., 2014), but how these effects, and transcription in general, shape chromatin is unknown. To determine whether transcription can modulate loop extrusion, we studied cells in which the primary extrusion barriers could be removed by CTCF depletion and cohesin's residence time and abundance on chromatin could be increased by Wapl knockout. We found evidence that transcription directly interacts with loop extrusion through a novel "moving barrier" mechanism, but not by loading cohesin at active promoters. Hi-C experiments showed intricate, cohesin-dependent genomic contact patterns near actively transcribed genes, and in CTCF-Wapl double knockout (DKO) cells (Busslinger et al., 2017), genomic contacts were enriched between sites of transcription-driven cohesin localization ("cohesin islands"). Similar patterns also emerged in polymer simulations in which transcribing RNA polymerases (RNAPs) acted as "moving barriers" by impeding, slowing, or pushing loop-extruding cohesins. The model predicts that cohesin does not load preferentially at promoters and instead accumulates at TSSs due to the barrier function of RNAPs. We tested this prediction by new ChIP-seq experiments, which revealed that the "cohesin loader" Nipbl (Ciosk et al., 2000) co-localizes with cohesin, but, unlike in previous reports (Busslinger et al., 2017; Kagey et al., 2010; Zhu et al., 2021; Zuin et al., 2014), Nipbl did not accumulate at active promoters. We propose that RNAP acts as a new type of barrier to loop extrusion that, unlike CTCF, is not stationary in its precise genomic position, but is itself dynamically translocating and relocalizes cohesin along DNA. In this way, loop extrusion could enable translocating RNAPs to maintain contacts with distal regulatory elements, allowing transcriptional activity to shape genomic functional organization.

Cell ◽  
2015 ◽  
Vol 161 (4) ◽  
pp. 879-892 ◽  
Author(s):  
Ye Fu ◽  
Guan-Zheng Luo ◽  
Kai Chen ◽  
Xin Deng ◽  
Miao Yu ◽  
...  

2018 ◽  
Author(s):  
H.M. Chen ◽  
T.B. Sackton ◽  
B. Mutlu ◽  
J. Wang ◽  
S. Keppler-Ross ◽  
...  

AbstractH3K9me3 (histone H3 modified with tri-methylation at lysine 9) is a hallmark of transcriptional silencing and heterochromatin. However, its global effects on the genome, including euchromatin, are less well understood. Here we develop Formaldehyde-Assisted Identification of Regulatory Elements (FAIRE) for C. elegans to examine the chromatin configuration of mutants that lack virtually all H3K9me3, while leaving H3K9me1 and H3K9me2 intact. We find that nucleosomes are mildly disrupted, and levels of H3K9me2 and H3K27me3 rise in mutant embryos. In addition to these expected changes, the most dramatic change occurs in euchromatin: many regions encompassing transcription start sites (TSSs) gain an average of two nucleosomes in mutants. The affected regions normally lack H3K9me3, revealing a locus non-autonomous role for H3K9me3. Affected TSSs are associated with genes that are active in epithelia and muscles, and implicated in development, locomotion, morphogenesis and transcription. Mutant embryos develop normally under ideal laboratory conditions but die when challenged, with defects in morphogenesis and development. Our findings reveal that H3K9me3 protects transcription start sites within euchromatin from nucleosome deposition. These results may be relevant to mammals, where diseases that disrupt the nuclear lamina and heterochromatin can alter epithelial and muscle gene expression.


2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Isaac Shamie ◽  
Sascha H Duttke ◽  
Karen J la Cour Karottki ◽  
Claudia Z Han ◽  
Anders H Hansen ◽  
...  

Abstract Chinese hamster ovary (CHO) cells are widely used for producing biopharmaceuticals, and engineering gene expression in CHO is key to improving drug quality and affordability. However, engineering gene expression or activating silent genes requires accurate annotation of the underlying regulatory elements and transcription start sites (TSSs). Unfortunately, most TSSs in the published Chinese hamster genome sequence were computationally predicted and are frequently inaccurate. Here, we use nascent transcription start site sequencing methods to revise TSS annotations for 15 308 Chinese hamster genes and 3034 non-coding RNAs based on experimental data from CHO-K1 cells and 10 hamster tissues. We further capture tens of thousands of putative transcribed enhancer regions with this method. Our revised TSSs improves upon the RefSeq annotation by revealing core sequence features of gene regulation such as the TATA box and the Initiator and, as exemplified by targeting the glycosyltransferase gene Mgat3, facilitate activating silent genes by CRISPRa. Together, we envision our revised annotation and data will provide a rich resource for the CHO community, improve genome engineering efforts and aid comparative and evolutionary studies.


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi110-vi110
Author(s):  
Tathiane Malta ◽  
Thais Sarraf Sabedot ◽  
Carlos Carlotti jr ◽  
Houtan Noushmehr

Abstract Meningiomas are mostly benign brain tumors but have a substantial risk of recurrence, sometimes to more aggressive subtypes. Recently, a DNA methylation signature in meningioma was described as able to stratify patients by recurrence risk (favorable and unfavorable). It is well recognized that epigenetic deregulation at distinct genomic elements can affect changes in gene expression and contribute to cancer initiation and progression. Our goal for this study is to define genes that are actively expressed or repressed by both DNA methylation and chromatin histone modification (defined by H3K4me3). For this pilot study, we selected two favorable (grades I and II) and two unfavorable (grades II and III) meningioma primary tumor samples (N=4) and mapped H3K4me3 genome-wide and whole-genome DNA methylation, in an attempt to identify active transcription start sites at known promoters. After data alignment, preprocessing and peak calling, we identified 29,514 consensus peaks for H3K4me3. The differential binding analysis resulted in 5,752 H3K4me3 regions that distinguish favorable from unfavorable meningioma, mostly gain of peaks in the unfavorable group. We identified 1,505 peaks overlapping with known promoters, 51% associated with gain of peaks in the unfavorable group. Promoter-associated chromatin changes coincided with hypomethylation in 23 unique genes in the unfavorable group. Genes such as MET, PTEN, and the long non-coding RNA RP11-60L3.1 were identified as potential regulators of meningioma recurrence. Our preliminary results describe the identification of distinct genome-wide changes in chromatin associated with meningioma patient with high risk for recurrence. Identification of candidate genes will provide knowledge of the role of epigenomics in the development of malignant meningioma and of opportunities for targeted therapy.


1994 ◽  
Vol 14 (12) ◽  
pp. 8143-8154 ◽  
Author(s):  
A Gutman ◽  
J Gilthorpe ◽  
P W Rigby

Mouse Hoxb-4 (Hox-2.6) is a homeobox gene that belongs to a family which also includes Hoxa-4, Hoxc-4, and Hoxd-4 and that is related to the Deformed gene in Drosophila melanogaster. We have determined the sequence of 1.2 kb of 5' flanking DNA of mouse Hoxb-4 and by nuclease S1 and primer extension experiments identified two transcription start sites, P1 and P2, 285 and 207 nucleotides upstream of the ATG initiator codon, respectively. We have shown that this region harbors two independent promoters which drive CAT expression in several different cell lines with various efficiencies, suggesting that they are subject to cell-type-specific regulation. Through detailed mutational analysis, we have identified several cis-regulatory elements, located upstream and downstream of the transcription start sites. They include two cell-type-specific negative regulatory elements, which are more active in F9 embryonal carcinoma cells than in neuroblastoma cells (regions a and d at -226 to -186 and +169 to +205, respectively). An additional negative regulatory element has been delimited (region b between +22 and +113). Positive regulation is achieved by binding of HoxTF, a previously unknown factor, to the sequence GCCATTGG (+148 to +155) that is essential for efficient Hoxb-4 expression. We have also defined the minimal promoter sequences and found that they include two 12-bp initiator elements centered around each transcription start site. The complex architecture of the Hoxb-4 promoter provides the framework for fine-tuned transcriptional regulation during embryonic development.


2020 ◽  
Author(s):  
Pei-Shang Wu ◽  
Donald P. Cameron ◽  
Jan Grosser ◽  
Laura Baranello ◽  
Lena Ström

AbstractThe SMC complex cohesin mediates sister chromatid cohesion established during replication, and damage-induced cohesion formed in response to DSBs post replication. The translesion synthesis polymerase Polη is required for damage-induced cohesion through a hitherto unknown mechanism. Since Polη is functionally associated with transcription, and transcription triggers de novo cohesion in S. pombe, we hypothesized that active transcription facilitates damage-induced cohesion in S. cerevisiae. Here, we found that expression of genes involved in chromatin assembly and positive transcription regulation were relatively enriched in WT compared to Polη-deficient cells (rad30Δ). The rad30Δ mutant showed a dysregulated transcriptional response and increased cohesin binding around transcription start sites. Perturbing histone exchange at promoters adversely affected damage-induced cohesion, similarly to deletion of RAD30. Conversely, altering chromatin accessibility or regulation of transcription elongation, suppressed the lack of damage-induced cohesion in rad30Δ cells. These results indicate that Polη promotes damage-induced cohesion through its role in transcription, and support the model that regulated transcription facilitates formation of damage-induced cohesion.


2014 ◽  
Author(s):  
Sofie Demeyer ◽  
Tom Michoel

Transcriptional regulation of gene expression is one of the main processes that affect cell diversification from a single set of genes. Regulatory proteins often interact with DNA regions located distally from the transcription start sites (TSS) of the genes. We developed a computational method that combines open chromatin and gene expression information for a large number of cell types to identify these distal regulatory elements. Our method builds correlation graphs for publicly available DNase-seq and exon array datasets with matching samples and uses graph-based methods to filter findings supported by multiple datasets and remove indirect interactions. The resulting set of interactions was validated with both anecdotal information of known long-range interactions and unbiased experimental data deduced from Hi-C and CAGE experiments. Our results provide a novel set of high-confidence candidate open chromatin regions involved in gene regulation, often located several Mb away from the TSS of their target gene.


Biomolecules ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 827
Author(s):  
Gabriel Le Berre ◽  
Virginie Hossard ◽  
Jean-Francois Riou ◽  
Anne-Laure Guieysse-Peugeot

Alternative promoter usage involved in the regulation of transcription, splicing, and translation contributes to proteome diversity and is involved in a large number of diseases, in particular, cancer. Epigenetic mechanisms and cis regulatory elements are involved in alternative promoter activity. Multiple transcript isoforms can be produced from a gene, due to the initiation of transcription at different transcription start sites (TSS). These transcripts may not have regions that allow discrimination during RT-qPCR, making quantification technically challenging. This study presents a general method for the relative quantification of a transcript synthesized from a particular TSS that we called AP-TSS (analysis of particular TSS). AP-TSS is based on the specific elongation of the cDNA of interest, followed by its quantification by qPCR. As proof of principle, AP-TSS was applied to two non-coding RNA: telomeric repeat-containing RNAs (TERRA) from a particular subtelomeric TSS, and Alu transcripts. The treatment of cells with a DNA methylation inhibitor was associated with a global increase of the total TERRA level, but the TERRA expression from the TSS of interest did not change in HT1080 cells, and only modestly increased in HeLa cells. This result suggests that TERRA upregulation induced by global demethylation of the genome is mainly due to activation from sites other than this particular TSS. For Alu RNA, the signal obtained by AP-TSS is specific for the RNA Polymerase III-dependent Alu transcript. In summary, our method provides a tool to study regulation of gene expression from a given transcription start site, in different conditions that could be applied to many genes. In particular, AP-TSS can be used to investigate the epigenetic regulation of alternative TSS usage that is of importance for the development of epigenetic-targeted therapies.


2020 ◽  
Author(s):  
Isaac Shamie ◽  
Sascha H. Duttke ◽  
Karen J. la Cour Karottki ◽  
Claudia Z. Han ◽  
Anders H. Hansen ◽  
...  

ABSTRACTChinese hamster ovary (CHO) cells, with their human-compatible glycosylation and high protein titers, are the most widely used cells for producing biopharmaceuticals. Engineering gene expression in CHO is key to improving drug quality and affordability. However, engineering gene expression or activating silent genes requires accurate annotation of the underlying regulatory elements and transcription start sites (TSSs). Unfortunately, most TSSs in the Chinese hamster genome were computationally predicted and are frequently inaccurate. Here, we revised TSS annotations for 15,308 Chinese hamster genes and 4,478 non-coding RNAs based on experimental data from CHO-K1 cells and 10 hamster tissues. The experimental realignment and discovery of TSSs now expose previously hidden motifs, such as the TATA box. We further demonstrate, by targeting the glycosyltransferase gene Mgat3, how accurate annotations readily facilitate activating silent genes by CRISPRa to obtain more human-like glycosylation. Together, we envision our annotation and data will provide a rich resource for the CHO community, improve genome engineering efforts and aid comparative and evolutionary studies.


2021 ◽  
Author(s):  
Georgi K. Marinov ◽  
Xinyi Chen ◽  
Tong Wu ◽  
Chuan He ◽  
Arthur R. Grossman ◽  
...  

AbstractNucleomoprhs are remnants of secondary endosymbiotic events between two eukaryote cells wherein the endosymbiont has retained its eukaryotic nucleus. Nucleomorphs have evolved at least twice independently, in chlorarachniophytes and cryptophytes, yet they have converged on a remarkably similar genomic architecture, characterized by the most extreme compression and miniaturization among all known eukaryotic genomes. Previous computational studies have suggested that nucleomorph chromatin likely exhibits a number of divergent features. In this work, we provide the first maps of open chromatin, active transcription, and three-dimensional organization for the nucleomorph genome of the chlorarachniophyte Bigelowiella natans. We find that the B. natans nucleomorph genome exists in a highly accessible state, akin to that of ribosomal DNA in some other eukaryotes, and that it is highly transcribed over its entire length, with few signs of polymerase pausing at transcription start sites (TSSs). At the same time, most nucleomorph TSSs show very strong nucleosome positioning. Chromosome conformation (Hi-C) maps reveal that nucleomorph chromosomes interact with one other at their telomeric regions, and show the relative contact frequencies between the multiple genomic compartments of distinct origin that B. natans cells contain.


Sign in / Sign up

Export Citation Format

Share Document