Parasympathetic ganglia derive from Schwann cell precursors

Science ◽  
2014 ◽  
Vol 345 (6192) ◽  
pp. 87-90 ◽  
Author(s):  
I. Espinosa-Medina ◽  
E. Outin ◽  
C. A. Picard ◽  
Z. Chettouh ◽  
S. Dymecki ◽  
...  

Neural crest cells migrate extensively and give rise to most of the peripheral nervous system, including sympathetic, parasympathetic, enteric, and dorsal root ganglia. We studied how parasympathetic ganglia form close to visceral organs and what their precursors are. We find that many cranial nerve-associated crest cells coexpress the pan-autonomic determinantPaired-like homeodomain 2b(Phox2b) together with markers of Schwann cell precursors. Some give rise to Schwann cells after down-regulation of PHOX2b. Others form parasympathetic ganglia after being guided to the site of ganglion formation by the nerves that carry preganglionic fibers, a parsimonious way of wiring the pathway. Thus, cranial Schwann cell precursors are the source of parasympathetic neurons during normal development.

2021 ◽  
Vol 23 (Supplement_4) ◽  
pp. iv7-iv7
Author(s):  
Charlotte Lespade ◽  
Liyam Laraba ◽  
Evyn Woodhouse ◽  
Marie Srotyr ◽  
Alison C Lloyd ◽  
...  

Abstract Aims The NF2 gene encodes the tumour suppressor Merlin, which is deleted in 100% of patients with the familial tumour predisposition syndrome neurofibromatosis type 2 but also in 70% of those who develop sporadic schwannomas. The Raf-TR mouse model uses a tamoxifen-inducible Raf-kinase/ oestrogen receptor fusion protein (Raf-TR) expressed in myelinating Schwann cells to mimic a nerve injury response in Schwann cell by activating Raf/MEK/ERK signalling in the absence of peripheral nerve injury. We will assess whether Raf/MEK/ERK activation on an NF2 null background leads to tumourigenesis within the vestibular nerves and dorsal root ganglia (DRGs), two tumour sites identified in the Periostin-Cre mouse model in which schwannoma formation is spontaneous, with a view to generating an inducible NF2 null schwannoma mouse model. Method Mice with a Schwann cell specific loss of Merlin were crossed with mice carrying a tamoxifen-inducible Raf-TR gene to generate Raf-TR+/-; P0-Cre+/-; NF2fl/fl (Cre+) mice which were NF2 null and compared to Raf-TR+/-; P0-Cre-/-; NF2fl/fl (Cre-) littermate controls. Mice were injected with tamoxifen or vehicle for five consecutive days and their vestibular nerves and dorsal root ganglia (DRGs) were analysed at various timepoints . An EdU proliferation assay was used to quantify the proliferation in the vestibular ganglia, as well as the DRGs. Rates of proliferation were compared to Cre- age-matched littermate controls treated with tamoxifen or vehicle. Results In the Periostin-Cre NF2 null schwannoma model, tumours form spontaneously in the DRGs and vestibular ganglia. In our new model, we see a clear increase in proliferation at 21 d post-injection in the NF2 null (Cre+) tamoxifen-treated mice compared to control (Cre-) tamoxifen-treated controls in both DRGs and vestibular ganglia. Cre- tamoxifen-treated mice do not show increased proliferation compared to Cre- vehicle controls. Taken together, this shows that activation of the Raf/MEK/ERK pathway in Schwann cells only causes a sustained proliferation response on an NF2 null background in the DRGs and vestibular ganglia. We are assessing later timepoints to further characterise tumour development in these mice. Conclusion Combining the Raf-TR mouse model to create a demyelinating phenotype with an NF2 null background leads to vastly increased rates of proliferation at the sites of schwannoma tumourigenesis within the peripheral nervous system: the DRGs and the vestibular ganglia. The high proliferation in the vestibular ganglia in particular is similar to the development of vestibular schwannomas in patients with Neurofibromatosis type 2. The new mouse model used in this study shows potential to be very useful as an inducible schwannoma tumour model, in which we can study the early events of tumour formation.


1988 ◽  
Vol 107 (1) ◽  
pp. 341-351 ◽  
Author(s):  
B Seilheimer ◽  
M Schachner

The involvement of the adhesion molecules L1, N-CAM, and J1 in adhesion and neurite outgrowth in the peripheral nervous system was investigated. We prepared Schwann cells and fibroblasts (from sciatic nerves) and neurons (from dorsal root ganglia) from 1-d mice. These cells were allowed to interact with each other in a short-term adhesion assay. We also measured outgrowth of dorsal root ganglion neurons on Schwann cell and fibroblast monolayers. Schwann cells (which express L1, N-CAM, and J1) adhered most strongly to dorsal root ganglion neurons by an L1-dependent mechanism and less by N-CAM and J1. Schwann cell-Schwann cell adhesion was mediated by L1 and N-CAM, but not J1. Adhesion of fibroblasts (which express N-CAM, but not L1 or J1) to neurons or Schwann cells was mediated by L1 and N-CAM and not J1. However, inhibition by L1 and N-CAM antibodies was found to be less pronounced with fibroblasts than with Schwann cells. N-CAM was also strongly involved in fibroblast-fibroblast adhesion. Neurite outgrowth was most extensive on Schwann cells and less on fibroblasts. A difference in extent of neurite elongation was seen between small- (10-20 microns) and large- (20-35 microns) diameter neurons, with the larger neurons tending to exhibit longer neurites. Fab fragments of polyclonal L1, N-CAM, and J1 antibodies exerted slightly different inhibitory effects on neurite outgrowth, depending on whether the neurites were derived from small or large neurons. L1 antibodies interfered most strikingly with neurite outgrowth on Schwann cells (inhibition of 88% for small and 76% for large neurons), while no inhibition was detectable on fibroblasts. Similarly, although to a smaller extent than L1, N-CAM appeared to be involved in neurite outgrowth on Schwann cells and not on fibroblasts. Antibodies to J1 only showed a very small effect on neurite outgrowth of large neurons on Schwann cells. These observations show for the first time that identified adhesion molecules are potent mediators of glia-dependent neurite formation and attribute to L1 a predominant role in neurite outgrowth on Schwann cells which may be instrumental in regeneration.


2020 ◽  
Author(s):  
Anjali Balakrishnan ◽  
Lauren Belfiore ◽  
Lakshmy Vasan ◽  
Yacine Touahri ◽  
Morgan Stykel ◽  
...  

ABSTRACTSchwann cells are the principal glial cells of the peripheral nervous system, and their development into myelinating glia is critically dependent on MEK/ERK signaling. Ets-domain transcription factors (Etv1, Etv4, Etv5) are common downstream effectors of MEK/ERK signalling, but so far, only Etv1 has been ascribed a role in Schwann cell development, and only in non-myelinating cells. Here, we examined the role of Etv5, which is expressed in Schwann cell precursors, including neural crest cells and satellite glia, in Schwann cell lineage development. We analysed Etv5tm1Kmm mutants (designated Etv5−/−) at embryonic days (E) 12.5, E15.5 and E18.5, focusing on dorsal root ganglia. At these embryonic stages, satellite glia (glutamine synthetase) and Schwann cell markers, including transcriptional regulators (Sox10, Sox9, Tfap2a, Pou3f1) and non-transcription factors (Ngfr, BFABP, GFAP), were expressed in the DRG of wild-type and Etv5−/− embryos. Furthermore, by E18.5, quantification of Sox10+ Schwann cells and NeuN+ neurons revealed that these cells were present in normal numbers in the Etv5−/− dorsal root ganglia. We next performed peripheral nerve injuries at postnatal day 21, revealing that Etv5−/− mice had an enhanced injury response, generating more Sox10+ Schwann cells compared to wild-type animals at five days post-injury. Thus, while Etv5 is not required for Schwann cell development, possibly due to genetic redundancy with Etv1 and/or Etv4, Etv5 is an essential negative regulator of the peripheral nerve injury repair response.SIGNIFICANCE STATEMENTOur study sought to determine whether the ets domain transcription factor, Etv5, plays a role in regulating Schwann cell development and nerve repair. By using an embryonically and postnatally viable hypomorphic Etv5 mutant allele, we demonstrated that Etv5 is not required for the development of Schwann cells or other neural crest derivatives in the dorsal root ganglia, including satellite glia and neurons. Surprisingly, loss of Etv5 had a direct impact on the Schwann cell repair response post-injury, resulting in more Schwann cells populating the distal injured nerve site compared to wild-type animals. Thus, this work describes for the first time a role for Etv5 in regulating the Schwann cell repair response after peripheral nerve injury.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 37-37
Author(s):  
Kristin Komnick ◽  
Jennifer May ◽  
Pouneh Kermani ◽  
Sreemanti Basu ◽  
Irene Hernandez ◽  
...  

Blood cell production is regulated by peripheral nerve fibers that innervate the bone marrow. However, little is known about the development or maintenance of hematopoietic innervation. Schwann cells (SCs) are the primary axon 'support cells' of the peripheral nervous system (PNS), and abnormal SC development is sufficient to impair peripheral nerve function. SCs are also the primary repair cell for the PNS which makes them an attractive therapeutic target for normalization of drug or malignancy-induced 'hematopoietic neuropathy'. We hypothesized that neural regulation of hematopoiesis is dependent on SC development. To test this hypothesis, we used the Myelin Protein Zero-Cre (MP0-Cre); Lamc1fl/fl mouse line in which laminin-γ1 expression is deleted from SC precursors and their progeny1. Early SC maturation is dependent on autocrine SC precursor-derived molecules such as laminin-γ1. SC differentiation arrests prior to axon sorting and ensheathment in MP0-Cre; Lamc1fl/fl mice, and causes a global peripheral neuropathy that persists throughout the lifetime of the animal. Preliminary hematopoietic analysis of 'steady state' MP0-Cre; Lamc1fl/fl and littermate control mice has shown the following: (1) MP0-Cre; Lamc1fl/fl bone marrow is innervated, and Cre-mediated gene recombination occurs in cells immunophenotypically consistent with SCs throughout the peripheral nervous system, including those in the bone marrow; (2) MP0-Cre; Lamc1fl/fl mice are lymphopenic but not neutropenic; (3) MP0-Cre; Lamc1fl/fl mice have significantly reduced spleen size and cellularity; and (4) MP0-Cre; Lamc1fl/fl bone marrow has an ~50% reduction in Lin-Sca-1+Kit+(LSK) cells (measured as a percentage of the Lin- compartment of the bone marrow). These results are consistent with earlier work by our groups in which we found that global Lamc1 gene deletion in adult mice induced peripheral blood lymphopenia, reduced spleen size, and a niche-dependent reduction of lymphoid progenitor and precursor cells that was secondary to increased lymphoid precursor cell apoptosis and reduced proliferation (UBC-CreERT2; Lamc1fl/fl mouse line). As with the SC-specific laminin-γ1 deficient mice, myelopoiesis was preserved in the UBC-CreERT2; Lamc1fl/fl mice. Based on results from MP0-Cre; Lamc1fl/fl and UBC-CreERT2; Lamc1fl/fl mice, we conclude that early lymphoid but not myeloid development requires laminin-γ1 expression by MP0-Cre-targetted niche cells, i.e. Schwann Cells. Our results are consistent with reports from other labs that hematopoietic sympathetic neuropathy promotes aberrant myeloid expansion at the expense of lymphopoiesis2. Going forward, we will determine whether lymphopoietic development is dependent on global versus laminin-specific SC-derived cues, and whether these signals are transmitted directly between SCs and lymphoid biased HSPCs or indirectly via other components of the hematopoietic niche. We anticipate that this line of investigation will provide molecular insights and pharmacologic targets for prevention and or normalization of the 'hematopoietic neuropathy' induced by diabetes, aging, neurotoxic chemotherapies and myeloid malignancies. REFERENCES: 1 Yu, W. M., Feltri, M. L., Wrabetz, L., Strickland, S. & Chen, Z. L. Schwann cell-specific ablation of laminin gamma1 causes apoptosis and prevents proliferation. J Neurosci25, 4463-4472, doi:10.1523/JNEUROSCI.5032-04.2005 (2005). 2 Maryanovich, M. et al. Adrenergic nerve degeneration in bone marrow drives aging of the hematopoietic stem cell niche. Nat Med24, 782-791, doi:10.1038/s41591-018-0030-x (2018). Disclosures No relevant conflicts of interest to declare.


IBRO Reports ◽  
2019 ◽  
Vol 6 ◽  
pp. S124
Author(s):  
Woon-Hae Kim ◽  
Hyun-Gyu Kang ◽  
Taehoon H. Kim ◽  
Yoon Jeong Mo ◽  
Yu Seon Kim ◽  
...  

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Han-Seop Kim ◽  
Jae Yun Kim ◽  
Cho Lok Song ◽  
Ji Eun Jeong ◽  
Yee Sook Cho

BioTechniques ◽  
2019 ◽  
Vol 67 (1) ◽  
pp. 11-15
Author(s):  
Zhuowen Liang ◽  
Tao Lei ◽  
Shuang Wang ◽  
ZhuoJing Luo ◽  
XueYu Hu

Sign in / Sign up

Export Citation Format

Share Document