paracrine effect
Recently Published Documents


TOTAL DOCUMENTS

106
(FIVE YEARS 20)

H-INDEX

26
(FIVE YEARS 2)

2021 ◽  
Vol 22 (21) ◽  
pp. 12018
Author(s):  
Julia K. Bar ◽  
Anna Lis-Nawara ◽  
Piotr Grzegorz Grelewski

The therapeutic potential of the dental pulp stem (DSC) cell-derived secretome, consisting of various biomolecules, is undergoing intense research. Despite promising in vitro and in vivo studies, most DSC secretome-based therapies have not been implemented in human medicine because the paracrine effect of the bioactive factors secreted by human dental pulp stem cells (hDPSCs) and human exfoliated deciduous teeth (SHEDs) is not completely understood. In this review, we outline the current data on the hDPSC- and SHED-derived secretome as a potential candidate in the regeneration of bone, cartilage, and nerve tissue. Published reports demonstrate that the dental MSC-derived secretome/conditional medium may be effective in treating neurodegenerative diseases, neural injuries, cartilage defects, and repairing bone by regulating neuroprotective, anti-inflammatory, antiapoptotic, and angiogenic processes through secretome paracrine mechanisms. Dental MSC-secretomes, similarly to the bone marrow MSC-secretome activate molecular and cellular mechanisms, which determine the effectiveness of cell-free therapy. Many reports emphasize that dental MSC-derived secretomes have potential application in tissue-regenerating therapy due to their multidirectional paracrine effect observed in the therapy of many different injured tissues.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bartosz Sikora ◽  
Aleksandra Skubis-Sikora ◽  
Agnieszka Prusek ◽  
Joanna Gola

AbstractLimbal stem cells deficiency (LSCD) is an eye disease caused by the loss of stem cells in the corneal limbus as a succession of an injury due physical, biological, or chemical agents. Current therapies of LSCD are focused on the transplantation of donor corneas or tissue equivalents produced from autologous limbal stem cells. Every year there are waiting millions of patients for the cornea transplantation all over the world and the list is growing due to the relatively low number of cornea donors. On the other hand, the transplantation of tissue or cells into the recipient’s body is associated with the higher risk of possible side effects. The possibility of the application of an indirect treatment using the properties of the paracrine activity of stem cells, would be beneficial for the patients with transplant failures. This study was to evaluate the paracrine effect of mesenchymal stem cells derived from adipose tissue (ADSC) on the viability of limbal epithelial stem cells (LESC). The paracrine effect was assessed by treating LESC with conditioned medium collected from ADSC culture. Cell viability, cytotoxicity, apoptosis and proliferation were evaluated using in vitro assays in standard conditions and induced inflammation. After the exposure to the examined conditions, the expression of genes related to pro- and anti- inflammatory factors was evaluated and compared to the secretion of selected cytokines by ELISA test. Moreover, the changes in LESC phenotype were assessed using of phenotype microarrays. Our findings suggest that paracrine activity of ADSC on LESC promotes its proliferation and has a potential role in mitigation of the adverse impact of inflammation induced by lipopolysaccharide.


2021 ◽  
Author(s):  
Bartosz Sikora ◽  
Aleksandra Skubis-Sikora ◽  
Agnieszka Prusek ◽  
Joanna Gola

Abstract Limbal stem cells deficiency (LSCD) is an eye disease caused by the loss of stem cells in the corneal limbus as a succession of an injury due physical, biological, or chemical agents. Current therapies of LSCD are focused on the transplantation of donor corneas or tissue equivalents produced from autologous limbal stem cells. Every year there are waiting millions of people for the cornea transplantation all over the world and the list of waiting patients is growing due to the relatively low number of cornea donors. On the other hand, the transplantation of tissue or cells into the recipient’s body is associated with the higher risk of possible side effects. The possibility of the application of an indirect treatment using the properties of the paracrine activity of stem cells, would be beneficial for the patients with transplant failures. This study was to evaluate the paracrine effect of mesenchymal stem cells derived from adipose tissue (ADSC) on the viability of limbal epithelial stem cells (LESC). The paracrine effect was assessed by treating LESC with conditioned medium collected from ADSC culture. Cell viability, cytotoxicity, apoptosis and proliferation were evaluated using in vitro assays in standard conditions and induced inflammation. After the exposure to the examined conditions, the expression of genes related to pro- and anti- inflammatory factors was evaluated and compared to the secretion of selected cytokines by ELISA test. Moreover, the changes in LESC phenotype were assessed using of phenotype microarrays. Our findings suggest that paracrine activity of ADSC on LESC promotes its proliferation and mitigates the adverse impact of induced inflammation.


2021 ◽  
Author(s):  
Armin Attar ◽  
Fatemeh Nouri ◽  
Arash Yazdanshenas ◽  
Kamran Hessami ◽  
Massoud Vosough ◽  
...  

Abstract BackgroundMeta-analysis from previous studies have shown that treatment with Mesenchymal stromal cell (MCSs) may increase the left ventricular ejection fraction (LVEF) after acute myocardial infarction (AMI) by 3.84% and the effect is greater in those who are not aged and have developed a reduced LVEF. However, it seems that MSC transplantation does its effect through an indirect paracrine effect and direct differentiation to the cardiomyocytes does not occur. Therefore, it can be hypothesized that this paracrine effect would be augmented if repeated doses of MSC are transplanted. This study is conducted to compare single vs. double injection of MSCs.MethodsThis is a single-blind, randomized, multicenter trial aiming to determine whether intracoronary infusion of double doses of umbilical cord-derived Wharton’s jelly MSCs (WJ-MSCs) improves LVEF more after AMI compared to single administration. The study will enroll 60 AMI 3 to 7 days after AMI. The patients should be under 65 years old and have a severe impairment in LV function (LVEF < 40%). They will be randomized to three arms receiving single or double doses of intracoronary infusion of WJ-MSCs or placebo. Primary endpoint of this study is assessment of improvement in LVEF at 6-month post intervention as compared to the baseline. DiscussionThis investigation will help to determine whether infusion of booster (second) dose of intracoronary WJ-MSCs in patients with AMI will contribute to increasing its effect on the improvement of myocardial function.Trial registrationIRCT20201116049408N1. (www.IRCT.ir)


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Yukie Mizuta ◽  
Tomohiko Akahoshi ◽  
Jie Guo ◽  
Shuo Zhang ◽  
Sayoko Narahara ◽  
...  

Abstract Background Mesenchymal stem cells (MSCs), including adipose-derived mesenchymal stem cells (ADSCs), have been shown to attenuate organ damage in acute respiratory distress syndrome (ARDS) and sepsis; however, the underlying mechanisms are not fully understood. In this study, we aimed to explore the potential roles and molecular mechanisms of action of ADSCs in histone-induced endothelial damage. Methods Male C57BL/6 N mice were intravenously injected with ADSCs, followed by histones or a vehicle. The mice in each group were assessed for survival, pulmonary vascular permeability, and histological changes. A co-culture model with primary human umbilical vein endothelial cells (HUVECs) exposed to histones was used to clarify the paracrine effect of ADSCs. Overexpression and inhibition of miR-126 ADSCs were also examined as causative factors for endothelial protection. Results The administration of ADSCs markedly improved survival, inhibited histone-mediated lung hemorrhage and edema, and attenuated vascular hyper-permeability in mice. ADSCs were engrafted in the injured lung and attenuated histone-induced endothelial cell apoptosis. ADSCs showed endothelial protection (via a paracrine effect) and Akt phosphorylation in the histone-exposed HUVECs. Notably, increased Akt phosphorylation by ADSCs was mostly mediated by exosomes in histone-induced cytotoxicity and lung damage. Moreover, the expression of miR-126 was increased in exosomes from histone-exposed ADSCs. Remarkably, the inhibition of miR-126 in ADSCs failed to increase Akt phosphorylation in histone-exposed HUVECs. Conclusion ADSC-derived exosomes may exert protective effects on endothelial cells via activation of the PI3K/Akt pathway.


2020 ◽  
Author(s):  
Yukie Mizuta ◽  
Tomohiko Akahoshi ◽  
Jie Guo ◽  
Shuo Zhang ◽  
Sayoko Narahara ◽  
...  

Abstract BackgroundMesenchymal stem cells (MSCs), including adipose-derived mesenchymal stem cells (ADSCs), have been shown to attenuate organ damage in acute respiratory distress syndrome (ARDS) and sepsis; however, the underlying mechanisms are not fully understood. In this study, we aimed to explore the potential roles and molecular mechanisms of action of ADSCs in histone-induced endothelial damage. MethodsMale C57BL/6N mice were intravenously injected with ADSCs, followed by histones or a vehicle. The mice in each group were assessed for survival, pulmonary vascular permeability, and histological changes. A co-culture model with primary human umbilical vein endothelial cells (HUVECs) exposed to histones was used to clarify the paracrine effect of ADSCs. Overexpression and inhibition of miR-126 ADSCs were also examined as causative factors for endothelial protection.ResultsThe administration of ADSCs markedly improved survival, inhibited histone-mediated lung hemorrhage and edema, and attenuated vascular hyper-permeability in mice. ADSCs were engrafted in the injured lung and attenuated histone-induced endothelial cell apoptosis. ADSCs showed endothelial protection (via a paracrine effect) and Akt phosphorylation in the histone-exposed HUVECs. Notably, increased Akt phosphorylation by ADSCs was mostly mediated by exosomes in histone-induced cytotoxicity and lung damage. Moreover, the expression of miR-126 was increased in exosomes from histone-exposed ADSCs. Remarkably, the inhibition of miR-126 in ADSCs failed to increase Akt phosphorylation in histone-exposed HUVECs. ConclusionADSC-derived exosomes may exert protective effects on endothelial cells via activation of the PI3K/Akt pathway.


2020 ◽  
Author(s):  
Yukie Mizuta ◽  
Tomohiko Akahoshi ◽  
Jie Guo ◽  
Shuo Zhang ◽  
Sayoko Narahara ◽  
...  

Abstract BackgroundMesenchymal stem cells (MSCs), including adipose-derived mesenchymal stem cells (ADSCs), have been shown to attenuate organ damage in acute respiratory distress syndrome (ARDS) and sepsis; however, the underlying mechanisms have not been fully understood. In this study, we aimed to explore the potential roles and molecular mechanisms of action of ADSCs in histone-induced endothelial damage. MethodsMale C57BL/6N mice were intravenously injected with ADSCs, followed by histones or a vehicle. The mice in each group were assessed for survival, pulmonary vascular permeability, and histological changes. A co-culture model with primary human umbilical vein endothelial cells (HUVECs) exposed to histones was used to clarify the paracrine effect of ADSCs. Overexpression and inhibition of miR-126 ADSCs were also examined as causative factors for endothelial protection.ResultsThe administration of ADSCs markedly improved survival, inhibited histone-mediated lung hemorrhage and edema, and attenuated vascular hyper-permeability in mice. ADSCs were engrafted in the injured lung and attenuated histone-induced endothelial cell apoptosis. ADSCs showed endothelial protection (via a paracrine effect) and Akt phosphorylation in the histone-exposed HUVECs. Notably, increased Akt phosphorylation by ADSCs was mostly mediated by exosomes in histone-induced cytotoxicity and lung damage. Moreover, inhibition of miR-126, which is known to be present in exosomes, in ADSCs did not increase Akt phosphorylation in histone-exposed HUVECs. ConclusionADSC-derived exosomes may exert protective effects on endothelial cells via activation of the PI3K/Akt pathway.


Sign in / Sign up

Export Citation Format

Share Document