Orientation-On-Demand Thin Films: Curing of Liquid Crystalline Networks in ac Electric Fields

Science ◽  
1996 ◽  
Vol 272 (5259) ◽  
pp. 252-255 ◽  
Author(s):  
H. Korner ◽  
A. Shiota ◽  
T. J. Bunning ◽  
C. K. Ober
1997 ◽  
Vol 30 (15) ◽  
pp. 4278-4287 ◽  
Author(s):  
Atsushi Shiota ◽  
Christopher K. Ober

2005 ◽  
Vol 15 (3) ◽  
pp. 172-176 ◽  
Author(s):  
Todd J. Menna ◽  
Frank E. Filisko ◽  
Rachel A. Lynch

Abstract The effect of high ac electric fields upon a liquid crystalline polymer solution, poly(n-hexyl isocyanate) in p-xylene, is examined. The results show that the solutions exhibit an increase in rheological properties proportional to the strength of the field at concentrations well below those exhibiting liquid crystalline behavior. The effects of frequency and field strength are examined as a means to explain this previously unreported phenomenon.


Materials ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3338
Author(s):  
Thomas W. Cornelius ◽  
Cristian Mocuta ◽  
Stéphanie Escoubas ◽  
Luiz R. M. Lima ◽  
Eudes B. Araújo ◽  
...  

The piezoelectric properties of lanthanum-modified lead zirconate titanate Pb1−xLax(Zr0.52Ti0.48)1−x/4O3 thin films, with x = 0, 3 and 12 mol% La, were studied by in situ synchrotron X-ray diffraction under direct (DC) and alternating (AC) electric fields, with AC frequencies covering more than four orders of magnitude. The Bragg reflections for thin films with low lanthanum concentration exhibit a double-peak structure, indicating two contributions, whereas thin films with 12% La possess a well-defined Bragg peak with a single component. In addition, built-in electric fields are revealed for low La concentrations, while they are absent for thin films with 12% of La. For static and low frequency AC electric fields, all lanthanum-modified lead zirconate titanate thin films exhibit butterfly loops, whereas linear piezoelectric behavior is found for AC frequencies larger than 1 Hz.


2003 ◽  
Vol 771 ◽  
Author(s):  
Robert A. Ramsey ◽  
Suresh C. Sharma ◽  
Robert M. Henry ◽  
Jay B. Atman

AbstractPolymer-dispersed liquid crystal (PDLC) is a composite material that consists of sub micron-size droplets of liquid crystalline (lc) material dispersed in a polymer matrix. A device is usually assembled by sandwiching PDLC between ITO-coated glass plates. The electro optical properties of such a device can be controlled by the application of electric fields; the device acts as a “switch” for the transmission of light. The transmission of light through the device can be controlled between almost zero and 100% by applying ac electric fields. The dielectric properties of the lc and polymer, shape and size distribution of the lc droplets in the PDLC, amplitude and frequency of the applied electric field are among the important parameters for optimizing the performance of such a device. We have investigated the optical properties of PDLC devices fabricated by using several different phase-separation techniques and different lc/polymer materials. We present results for the switching characteristics of these devices as functions of applied electric fields and the size-distribution of the lc droplets. We also present results that reinforce the influence of the interfacial charges on the optical properties of the PDLC devices.


Soft Matter ◽  
2021 ◽  
Author(s):  
Shuai Yin ◽  
Yi Huang ◽  
Teck Neng Wong

Critical conditions with electric capillary number are investigated for triggering the on-demand cutting of an organic thread in a microchannel under electric fields.


Author(s):  
Xinghua Su ◽  
Mengying Fu ◽  
Gai An ◽  
Zhihua Jiao ◽  
Qiang Tian ◽  
...  

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Harald Pleiner ◽  
Helmut R. Brand

Abstract We investigate theoretically the macroscopic dynamics of various types of ordered magnetic fluid, gel, and elastomeric phases. We take a symmetry point of view and emphasize its importance for a macroscopic description. The interactions and couplings among the relevant variables are based on their individual symmetry behavior, irrespective of the detailed nature of the microscopic interactions involved. Concerning the variables we discriminate between conserved variables related to a local conservation law, symmetry variables describing a (spontaneously) broken continuous symmetry (e.g., due to a preferred direction) and slowly relaxing ones that arise from special conditions of the system are considered. Among the relevant symmetries, we consider the behavior under spatial rotations (e.g., discriminating scalars, vectors or tensors), under spatial inversion (discriminating e.g., polar and axial vectors), and under time reversal symmetry (discriminating e.g., velocities from polarizations, or electric fields from magnetic ones). Those symmetries are crucial not only to find the possible cross-couplings correctly but also to get a description of the macroscopic dynamics that is compatible with thermodynamics. In particular, time reversal symmetry is decisive to get the second law of thermodynamics right. We discuss (conventional quadrupolar) nematic order, polar order, active polar order, as well as ferromagnetic order and tetrahedral (octupolar) order. In a second step, we show some of the consequences of the symmetry properties for the various systems that we have worked on within the SPP1681, including magnetic nematic (and cholesteric) elastomers, ferromagnetic nematics (also with tetrahedral order), ferromagnetic elastomers with tetrahedral order, gels and elastomers with polar or active polar order, and finally magnetorheological fluids and gels in a one- and two-fluid description.


Sign in / Sign up

Export Citation Format

Share Document