Early signal transduction by the antigen receptor without commitment to T cell activation

Science ◽  
1988 ◽  
Vol 240 (4855) ◽  
pp. 1029-1031 ◽  
Author(s):  
M. Goldsmith ◽  
A Weiss
1999 ◽  
Vol 190 (10) ◽  
pp. 1427-1438 ◽  
Author(s):  
Connie L. Sommers ◽  
Ronald L. Rabin ◽  
Alexander Grinberg ◽  
Henry C. Tsay ◽  
Joshua Farber ◽  
...  

Summary Recent data indicate that several members of the Tec family of protein tyrosine kinases function in antigen receptor signal transduction. Txk, a Tec family protein tyrosine kinase, is expressed in both immature and mature T cells and in mast cells. By overexpressing Txk in T cells throughout development, we found that Txk specifically augments the phospholipase C (PLC)-γ1–mediated calcium signal transduction pathway upon T cell antigen receptor (TCR) engagement. Although Txk is structurally different from inducible T cell kinase (Itk), another Tec family member expressed in T cells, expression of the Txk transgene could partially rescue defects in positive selection and signaling in itk−/− mice. Conversely, in the itk+/+ (wild-type) background, overexpression of Txk inhibited positive selection of TCR transgenic thymocytes, presumably due to induction of cell death. These results identify a role for Txk in TCR signal transduction, T cell development, and selection and suggest that the Tec family kinases Itk and Txk perform analogous functions.


2020 ◽  
Author(s):  
Marcos P. Damasio ◽  
Julia M. Marchingo ◽  
Laura Spinelli ◽  
Doreen A. Cantrell ◽  
Andrew J.M. Howden

SummaryThe integration of multiple signalling pathways that co-ordinate T cell metabolism and transcriptional reprogramming is required to drive T cell differentiation and proliferation. One key T cell signalling module is mediated by extracellular signal-regulated kinases (ERKs) which are activated in response to antigen receptor engagement. The activity of ERKs is often used to report antigen receptor occupancy but the full details of how ERKs control T cell activation is not understood. Accordingly, we have used mass spectrometry to explore how ERK signalling pathways control antigen receptor driven proteome restructuring in CD8 + T cells to gain insights about the biological processes controlled by ERKs in primary lymphocytes. Quantitative analysis of >8000 proteins identified only 900 ERK regulated proteins in activated CD8+ T cells. The data identify both positive and negative regulatory roles for ERKs during T cell activation and reveal that ERK signalling primarily controls the repertoire of transcription factors, cytokines and cytokine receptors expressed by activated T cells. The ERKs thus drive the transcriptional reprogramming of activated T cells and the ability of T cells to communicate with external immune cues.


Author(s):  
Naotaka Shibagaki ◽  
Ken-ichi Hanada ◽  
Satoshi Yamaguchi ◽  
Hironori Yamashita ◽  
Shinji Shimada ◽  
...  

2004 ◽  
Vol 279 (19) ◽  
pp. 19566-19573 ◽  
Author(s):  
Leanne Stokes ◽  
John Gordon ◽  
Gillian Grafton

In T lymphocytes, engagement of the antigen receptor leads to a biphasic Ca2+flux consisting of a mobilization of Ca2+from intracellular stores followed by a lower but sustained elevation that is dependent on extracellular Ca2+. The prolonged Ca2+flux is required for activation of transcription factors and for subsequent activation of the T cell. Ca2+influx requires as yet unidentified Ca2+channels, which potentially play a role in T cell activation. Here we present evidence that human T cells express a non-voltage-gated Ca2+channel related to L-type voltage-gated Ca2+channels. Drugs that block classical L-type channels inhibited the initial phase of the antigen receptor-induced Ca2+flux and could also inhibit the sustained phase of the Ca2+signal suggesting a role for the L-type Ca2+channel in antigen receptor signaling. T cells expressed transcripts for the α11.2 and α11.3 pore-forming subunits of L-type voltage-gated Ca2+channels and transcripts for all four known β-subunits including several potential new splice variants. Jurkat T leukemia cells expressed a small amount of full-length α11.2 protein but the dominant form was a truncated protein identical in size to a truncated α11.2 protein known to be expressed in B lymphocytes. They further expressed a truncated form of the α11.3 subunit and auxiliary β1- and β3-subunit proteins. Our data strongly suggest that functional but non-voltage-gated L-type Ca2+channels are expressed at the plasma membrane in T cells and play a role in the antigen receptor-mediated Ca2+flux in these cells.


Sign in / Sign up

Export Citation Format

Share Document