The polar coordinate model goes molecular

Science ◽  
1993 ◽  
Vol 259 (5094) ◽  
pp. 471-472 ◽  
Author(s):  
P. Bryant
Development ◽  
1981 ◽  
Vol 66 (1) ◽  
pp. 117-126
Author(s):  
Jane Karlsson ◽  
R. J. Smith

It is a general rule that of two complementary Drosophila imaginal disc fragments, one regenerates and the other duplicates. This paper reports an investigation of an exception to this rule. Duplicating fragments from the periphery of the wing disc which lacked presumptive notum were found to regenerate notum structures during and after duplication. The propensity for this was greatest in fragments lying close to the presumptive notum, with the exception of a fragment confined to the posterior compartment, which did not regenerate notum. Structures were added sequentially, and regeneration stopped once most of the notum was present. These results are not easily explained by the polar coordinate model, which states that regeneration cannot occur from duplicating fragments. Since compartments appear to be involved in this type of regeneration as in others, it is suggested that a new type of model is required, one which permits simultaneous regeneration and duplication, and assigns a major role to compartments.


Development ◽  
1986 ◽  
Vol 98 (1) ◽  
pp. 137-165
Author(s):  
Vernon French ◽  
Tamara F. Rowlands

After removal of a transverse strip of ventral thorax from the beetle, Tenebrio molitor, interaction occurred between epidermis posterior to the mesothoracic leg and that anterior to the metathoracic leg. Depending on the size and position of the excision, this interaction resulted in either the regeneration of the extirpated tissue or its replacement by an A/P reversed pattern of sclerites and supernumerary leg. By either route, local pattern continuity was restored between the normal meso- and metathoracic legs. Similarly, when a leg plus adjacent tissue was extirpated, continuity was restored by leg regeneration or by formation of an A/P reversed duplication of sclerites. The results of these strip excisions can be understood in terms of two current models of the ventral thorax (the Boundary Model and the Polar Coordinate Model), each of which postulates a distinct compartment or region intervening between the epidermis surrounding the bases of successive legs. However, the models do not explain the large differences in the frequency of formation of the duplication/deletion pattern after excisions of different widths. The results are also compatible with a different model, involving an A–P sequence of positional values similar to that proposed for the abdominal segment. Regeneration would restore continuity within the sequence by the shortest route, forming either the midsegment (including the leg) or the intersegmental region. The meso- and metathorax differ in the structure of the ventral sclerites and in the segmentation of the tarsus of the leg. The structures regenerated after the various excisions show that the segment border is not crossed during regeneration and indicate that an A/P compartment border running through the leg is usually also respected. There is no sign, however, of a third line of lineage restriction that would indicate a subdivision of the segment into three compartments (as proposed in the Boundary Model).


Development ◽  
1981 ◽  
Vol 65 (Supplement) ◽  
pp. 19-36
Author(s):  
Nigel Holder

The results of numerous types of grafting experiments involving the amputation of symmetrical limbs are described. These experiments were designed to test the tenets of the polar coordinate model. The analysis of the results of these grafts coupled with a quantitative analysis of blastemal shape strongly indicates that pattern regulation during amphibian limb regeneration can be understood in terms of the model.


Development ◽  
1986 ◽  
Vol 91 (1) ◽  
pp. 135-152 ◽  
Author(s):  
Lorette C. Javois ◽  
Laurie E. Iten

The pattern of differentiated wing structures formed following 180° rotation of the undifferentiated wing bud tip on its base was examined in detail. These analyses were performed to determine the handedness and origin of the supernumerary structures which arise. In contrast to the variable classes of symmetric and/or asymmetric limb anatomies observed following the same operation with amphibian regeneration blastemas, wings of predictable handedness were observed. Both the graft and stump contributed cells to the supernumerary structures. These results are discussed in the light of two current models describing the developing chick limb and analysed diagrammatically within the framework of one of these models, the polar coordinate model.


Development ◽  
1988 ◽  
Vol 102 (1) ◽  
pp. 175-192
Author(s):  
V. French ◽  
T.F. Rowlands

We have studied pattern regulation in the medial-lateral axis of the insect segment by grafting legs of beetle larvae (Tenebrio molitor) in different orientations into different positions medial and lateral to the leg site. The Boundary Model and Polar Coordinate Model of the insect appendage predict various patterns of supernumerary leg regeneration, and these grafts were designed to test the predictions. When a larval leg is grafted with normal anterior-posterior orientation medial to the normal leg, larvae and subsequent adults bear the graft plus a supernumerary leg. This is located where the lateral edge of the grafted leg confronted medial thorax (from the leg base across to the midline) and is orientated as a mirror image of the graft. The tarsal structure of supernumeraries resulting from grafts of the mesothoracic leg onto the metathorax shows that the supernumeraries may be derived from the graft, the host site or from both sources. Similarly, when a leg is grafted lateral to the leg site, a supernumerary forms at the confrontation between the medial edge of the graft and lateral thorax (from leg base across to the dorsal tergite). These results agree with the predictions of both models and would indicate that the compartments or the positional values extend out from the leg to the midline and the edge of the tergite. The two models differ in their predictions for the number, position and orientation of supernumeraries following 180 degree rotation of the grafted leg. When the rotated graft is placed lateral to the leg, larvae and adults form a single supernumerary which, in accordance with the Polar Coordinate Model, is lateral to the graft and orientated as a mirror image of it. However, the results of the corresponding medial graft cannot be readily explained by either model. Larvae form a single supernumerary either posterior or medial to the graft, suggesting a modified model with unequally spaced positional values, but the subsequent adult supernumeraries are almost all located medially. Experiments involving a graft placed medial to the leg site frequently show duplication of the adult midline suture, an extra branch forming between the thorax and the graft or supernumerary leg. In this case, as in the regeneration of the dorsal midline, the extreme medial structure is formed between two more lateral regions, which need not come from opposite sides of the body, but must have opposite mediolateral polarities. At present, no model can adequately explain all the results of grafting and extirpation on the insect ventral thorax.


Development ◽  
1989 ◽  
Vol 105 (3) ◽  
pp. 457-471
Author(s):  
E.M. Nelsen ◽  
J. Frankel

The left-handed phenotype of Tetrahymena thermophila (LH) is a global mirror image of its right-handed counterpart (RH). LH cells are ‘wound’ in the opposite direction from that of RH cells with respect to the placement of all structures that are asymmetrically disposed on the cell circumference. However, the local geometry of ciliary rows, including the asymmetrically placed microtubule bands and other accessory structures, is identical in RH and LH cells. Populations of LH cells grow more slowly than those of RH cells, probably because of nutritional problems due to faulty construction of the cell mouth. LH cells, like RH cells, conjugate in a homopolar configuration, while LH cells mate with RH cells in a heteropolar union which suffices to initiate the conjugal nuclear events but is insufficient to allow survival of progeny. Subclonal analyses indicate that reversion of the LH to the RH form is relatively rare. However, the frequency of reversion is greatly increased by conditions that promote the formation of doublets by fission arrest. An analysis of intermediate doublet forms in such cultures strongly suggests that reversion takes place through a specific pathway, with LH-LH doublets regulating to LH-RH forms that then may give rise to RH singlets. The origin and fate of the LH-RH intermediate forms can be explained by applying a modified polar coordinate model of positional information with the proviso that there is a preferred direction for the intercalation of new positional values.


Sign in / Sign up

Export Citation Format

Share Document