Friction at the bed does not control fast glacier flow

Science ◽  
2018 ◽  
Vol 361 (6399) ◽  
pp. 273-277 ◽  
Author(s):  
L. A. Stearns ◽  
C. J. van der Veen

The largest uncertainty in the ice sheet models used to predict future sea level rise originates from our limited understanding of processes at the ice/bed interface. Near glacier termini, where basal sliding controls ice flow, most predictive ice sheet models use a parameterization of sliding that has been theoretically derived for glacier flow over a hard bed. We find that this sliding relation does not apply to the 140 Greenland glaciers that we analyzed. There is no relationship between basal sliding and frictional stress at the glacier bed, contrary to theoretical predictions. There is a strong relationship between sliding speed and net pressure at the glacier bed. This latter finding is in agreement with earlier observations of mountain glaciers that have been largely overlooked by the glaciological community.

2021 ◽  
Author(s):  
Sainan Sun ◽  
Frank Pattyn

<p>Mass loss of the Antarctic ice sheet contributes the largest uncertainty of future sea-level rise projections. Ice-sheet model predictions are limited by uncertainties in climate forcing and poor understanding of processes such as ice viscosity. The Antarctic BUttressing Model Intercomparison Project (ABUMIP) has investigated the 'end-member' scenario, i.e., a total and sustained removal of buttressing from all Antarctic ice shelves, which can be regarded as the upper-bound physical possible, but implausible contribution of sea-level rise due to ice-shelf loss. In this study, we add successive layers of ‘realism’ to the ABUMIP scenario by considering sustained regional ice-shelf collapse and by introducing ice-shelf regrowth after collapse with the inclusion of ice-sheet and ice-shelf damage (Sun et al., 2017). Ice shelf regrowth has the ability to stabilize grounding lines, while ice shelf damage may reinforce ice loss. In combination with uncertainties from basal sliding and ice rheology, a more realistic physical upperbound to ice loss is sought. Results are compared in the light of other proposed mechanisms, such as MICI due to ice cliff collapse.</p>


2013 ◽  
Vol 38 (1) ◽  
pp. 19-54 ◽  
Author(s):  
Vena W. Chu

Understanding Greenland ice sheet (GrIS) hydrology is essential for evaluating response of ice dynamics to a warming climate and future contributions to global sea level rise. Recently observed increases in temperature and melt extent over the GrIS have prompted numerous remote sensing, modeling, and field studies gauging the response of the ice sheet and outlet glaciers to increasing meltwater input, providing a quickly growing body of literature describing seasonal and annual development of the GrIS hydrologic system. This system is characterized by supraglacial streams and lakes that drain through moulins, providing an influx of meltwater into englacial and subglacial environments that increases basal sliding speeds of outlet glaciers in the short term. However, englacial and subglacial drainage systems may adjust to efficiently drain increased meltwater without significant changes to ice dynamics over seasonal and annual scales. Both proglacial rivers originating from land-terminating glaciers and subglacial conduits under marine-terminating glaciers represent direct meltwater outputs in the form of fjord sediment plumes, visible in remotely sensed imagery. This review provides the current state of knowledge on GrIS surface water hydrology, following ice sheet surface meltwater production and transport via supra-, en-, sub-, and proglacial processes to final meltwater export to the ocean. With continued efforts targeting both process-level and systems analysis of the hydrologic system, the larger picture of how future changes in Greenland hydrology will affect ice sheet glacier dynamics and ultimately global sea level rise can be advanced.


2013 ◽  
Vol 59 (216) ◽  
pp. 733-749 ◽  
Author(s):  
H. Goelzer ◽  
P. Huybrechts ◽  
J.J. Fürst ◽  
F.M. Nick ◽  
M.L. Andersen ◽  
...  

AbstractPhysically based projections of the Greenland ice sheet contribution to future sea-level change are subject to uncertainties of the atmospheric and oceanic climatic forcing and to the formulations within the ice flow model itself. Here a higher-order, three-dimensional thermomechanical ice flow model is used, initialized to the present-day geometry. The forcing comes from a high-resolution regional climate model and from a flowline model applied to four individual marine-terminated glaciers, and results are subsequently extended to the entire ice sheet. The experiments span the next 200 years and consider climate scenario SRES A1B. The surface mass-balance (SMB) scheme is taken either from a regional climate model or from a positive-degree-day (PDD) model using temperature and precipitation anomalies from the underlying climate models. Our model results show that outlet glacier dynamics only account for 6–18% of the sea-level contribution after 200 years, confirming earlier findings that stress the dominant effect of SMB changes. Furthermore, interaction between SMB and ice discharge limits the importance of outlet glacier dynamics with increasing atmospheric forcing. Forcing from the regional climate model produces a 14–31 % higher sea-level contribution compared to a PDD model run with the same parameters as for IPCC AR4.


1974 ◽  
Vol 13 (69) ◽  
pp. 349-369 ◽  
Author(s):  
Steven M. Hodge

Detailed measurements of the positions of stakes along the center-line of the lower Nisqually Glacier were made over a period of two years. Variations in the basal sliding speed were calculated from the measured changes in surface speed, surface slope, and thickness, using the glacier flow model of Nye (1952) and allowing for the effect of the valley walls, longitudinal stress gradients, and uncertainties in the flow law of ice. The flow is predominantly by basal sliding and has a pronounced seasonal variation of approximately ±25%. Internal deformation contributes progressively less to the total motion with distance up-glacier. Neither the phase nor the magnitude of the seasonal velocity fluctuations can be accounted for by seasonal variations in the state of stress within the ice or at the bed, and the variations do not correlate directly with the melt-water discharge from the terminus. A seasonal wave in the ice flow travels down the glacier at a speed too high for propagation by internal deformation or the pressure melting/enhanced creep mechanism of basal sliding.The rate of sliding appears to be determined primarily by the amount of water in temporary storage in the glacier. The peak in sliding speed occurs, on the average, at the same time as the maximum liquid water storage of the South Cascade Glacier. The data support the idea that glaciers store water in the fall, winter and spring and then release it in the summer. This temporary storage may be greatest near the equilibrium line. The amount of stored water may increase over a period of years and be released catastrophically as a jökulhlaup. Any dependence of sliding on the basal shear stress is probably masked by the effect of variations in the hydrostatic pressure of water having access to the bed.


1974 ◽  
Vol 13 (69) ◽  
pp. 349-369 ◽  
Author(s):  
Steven M. Hodge

Detailed measurements of the positions of stakes along the center-line of the lower Nisqually Glacier were made over a period of two years. Variations in the basal sliding speed were calculated from the measured changes in surface speed, surface slope, and thickness, using the glacier flow model of Nye (1952) and allowing for the effect of the valley walls, longitudinal stress gradients, and uncertainties in the flow law of ice. The flow is predominantly by basal sliding and has a pronounced seasonal variation of approximately ±25%. Internal deformation contributes progressively less to the total motion with distance up-glacier. Neither the phase nor the magnitude of the seasonal velocity fluctuations can be accounted for by seasonal variations in the state of stress within the ice or at the bed, and the variations do not correlate directly with the melt-water discharge from the terminus. A seasonal wave in the ice flow travels down the glacier at a speed too high for propagation by internal deformation or the pressure melting/enhanced creep mechanism of basal sliding. The rate of sliding appears to be determined primarily by the amount of water in temporary storage in the glacier. The peak in sliding speed occurs, on the average, at the same time as the maximum liquid water storage of the South Cascade Glacier. The data support the idea that glaciers store water in the fall, winter and spring and then release it in the summer. This temporary storage may be greatest near the equilibrium line. The amount of stored water may increase over a period of years and be released catastrophically as a jökulhlaup. Any dependence of sliding on the basal shear stress is probably masked by the effect of variations in the hydrostatic pressure of water having access to the bed.


1985 ◽  
Vol 31 (108) ◽  
pp. 99-107 ◽  
Author(s):  
N. F. Mcintyre

AbstractA comparison of data from aircraft altimetry, Landsat imagery, and radia echo-sounding has shown characteristic surface topographies associated with sheet and stream flow. The transition between the two is abrupt and occurs at a step in the subglacial topography. This marks the onset of basal sliding and high velocities caused by subglacial water; it results in crevassed amphitheatre-like basins round the head of outlet glaciers. It is also the zone of maximum driving stress beyond which values decline rapidly as velocities increase. This abrupt transition appears to be topographically controlled since basal temperatures are at the pressure-melting point well inland of the change in regime. The Marie Byrd Land ice streams exhibit qualitative differences from other ice-sheet outlets, however; the change to lower driving stresses is much more gradual and occurs several hundred kilometres inland. Such ice streams have particularly low surface slopes and appear in form and flow regime to resemble confined ice shelves rather than grounded ice. The repeated association of the transition to rapid sliding with a distinct subglacial feature implies a stabilizing effect on discharge through outlet glaciers. Acceleration of the ice is pinned to a subglacial step and propagation of high velocities inland of this feature seems improbable. Rapid ice flow through subglacial trenches may also ensure a relatively permanent trough through accentuation of the feature by erosion. This is concentrated towards the heads of outlet glaciers up-stream of the region where significant basal decoupling occurs. This may be a mechanism for the overdeepening of fjords at their inland ends and the development of very steep fjord headwalls.


2012 ◽  
Vol 58 (209) ◽  
pp. 427-440 ◽  
Author(s):  
Hakime Seddik ◽  
Ralf Greve ◽  
Thomas Zwinger ◽  
Fabien Gillet-Chaulet ◽  
Olivier Gagliardini

AbstractIt is likely that climate change will have a significant impact on the mass balance of the Greenland ice sheet, contributing to future sea-level rise. Here we present the implementation of the full Stokes model Elmer/Ice for the Greenland ice sheet, which includes a mesh refinement technique in order to resolve fast-flowing ice streams and outlet glaciers. We discuss simulations 100 years into the future, forced by scenarios defined by the SeaRISE (Sea-level Response to Ice Sheet Evolution) community effort. For comparison, the same experiments are also run with the shallow-ice model SICOPOLIS (SImulation COde for POLythermal Ice Sheets). We find that Elmer/Ice is ~43% more sensitive (exhibits a larger loss of ice-sheet volume relative to the control run) than SICOPOLIS for the ice-dynamic scenario (doubled basal sliding), but ~61 % less sensitive for the direct global warming scenario (based on the A1 B moderate-emission scenario for greenhouse gases). The scenario with combined A1B global warming and doubled basal sliding forcing produces a Greenland contribution to sea-level rise of ~15cm for Elmer/Ice and ~12cm for SICOPOLIS over the next 100 years.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Julia Christmann ◽  
Veit Helm ◽  
Shfaqat Abbas Khan ◽  
Thomas Kleiner ◽  
Ralf Müller ◽  
...  

AbstractFuture projections of global mean sea level change are uncertain, partly because of our limited understanding of the dynamics of Greenland’s outlet glaciers. Here we study Nioghalvfjerdsbræ, an outlet glacier of the Northeast Greenland Ice Stream that holds 1.1 m sea-level equivalent of ice. We use GPS observations and numerical modelling to investigate the role of tides as well as the elastic contribution to glacier flow. We find that ocean tides alter the basal lubrication of the glacier up to 10 km inland of the grounding line, and that their influence is best described by a viscoelastic rather than a viscous model. Further inland, sliding is the dominant mechanism of fast glacier motion, and the ice flow induces persistent elastic strain. We conclude that elastic deformation plays a role in glacier flow, particularly in areas of steep topographic changes and fast ice velocities.


2012 ◽  
Vol 6 (1) ◽  
pp. 673-714 ◽  
Author(s):  
R. Winkelmann ◽  
A. Levermann ◽  
K. Frieler ◽  
M. A. Martin

Abstract. Future solid ice discharge from Antarctica under climate scenarios based on the Extended Concentration Pathways is investigated with the Potsdam Parallel Ice Sheet Model (PISM-PIK), a shallow model with a consistent representation of the ice flow in sheet, shelves and the transition zone. Both the uncertainty in the climate forcing as well as the intra-model uncertainty are combined into a probability distribution for solid ice discharge from Antarctica until the year 2500 under the ECP scenarios: All simulations are performed for a 81-member perturbed-physics ensemble and the likely ranges of surface and ocean warming under the emission pathways derived from the results of 20 CMIP3-AOGCMS. The effects of surface warming, ocean warming and increased precipitation on solid ice discharge are separately considered. We find that solid ice discharge caused by enhanced sub-shelf melting exceeds that caused by surface warming. Increasing precipitation leads to a change from net sea-level rise to sea-level drop. Our results suggest that the history of the ice-sheet plays an important role with respect to projections of solid ice discharge. Although all climate-change-forced simulations begin with the year 1850, the ice discharge around 2000 is significantly smaller than observed. Observed changes in ice discharge are reached around 2077 under the ECP-8.5 scenario. During the subsequent century, ice discharge reaches up to 0.24 m.


Science ◽  
2020 ◽  
Vol 367 (6484) ◽  
pp. 1321-1325 ◽  
Author(s):  
Robin E. Bell ◽  
Helene Seroussi

Antarctica contains most of Earth’s fresh water stored in two large ice sheets. The more stable East Antarctic Ice Sheet is larger and older, rests on higher topography, and hides entire mountain ranges and ancient lakes. The less stable West Antarctic Ice Sheet is smaller and younger and was formed on what was once a shallow sea. Recent observations made with several independent satellite measurements demonstrate that several regions of Antarctica are losing mass, flowing faster, and retreating where ice is exposed to warm ocean waters. The Antarctic contribution to sea level rise has reached ~8 millimeters since 1992. In the future, if warming ocean waters and increased surface meltwater trigger faster ice flow, sea level rise will accelerate.


Sign in / Sign up

Export Citation Format

Share Document