scholarly journals Ketyl radical reactivity via atom transfer catalysis

Science ◽  
2018 ◽  
Vol 362 (6411) ◽  
pp. 225-229 ◽  
Author(s):  
Lu Wang ◽  
Jeremy M. Lear ◽  
Sean M. Rafferty ◽  
Stacy C. Fosu ◽  
David A. Nagib

Single-electron reduction of a carbonyl to a ketyl enables access to a polarity-reversed platform of reactivity for this cornerstone functional group. However, the synthetic utility of the ketyl radical is hindered by the strong reductants necessary for its generation, which also limit its reactivity to net reductive mechanisms. We report a strategy for net redox-neutral generation and reaction of ketyl radicals. The in situ conversion of aldehydes to α-acetoxy iodides lowers their reduction potential by more than 1 volt, allowing for milder access to the corresponding ketyl radicals and an oxidative termination event. Upon subjecting these iodides to a dimanganese decacarbonyl precatalyst and visible light irradiation, an atom transfer radical addition (ATRA) mechanism affords a broad scope of vinyl iodide products with highZ-selectivity.

2020 ◽  
Author(s):  
Shunya Ohuchi ◽  
Hiroki Koyama ◽  
Hiroki Shigehisa

A catalytic synthesis of cyclic guanidines, which are found in many biologically active compounds and natu-ral products, was developed, wherein transition-metal hydrogen atom transfer and radical-polar crossover were employed. This mild and functional-group tolerant process enabled the cyclization of alkenyl guanidines bearing common protective groups, such as Cbz and Boc. This powerful method not only provided the common 5- and 6-membered rings but also an unusual 7-membered ring. The derivatization of the products afforded various heterocycles. We also investigated the se-lective cyclization of mono-protected or hetero-protected (TFA and Boc) alkenyl guanidines and their further derivatiza-tions.


2020 ◽  
Vol 24 ◽  
Author(s):  
Wengui Wang ◽  
Shoufeng Wang

Abstract:: Minisci-type reactions have become widely known as reactions that involve the addition of carbon-centered radicals to basic heteroarenes followed by formal hydrogen atom loss. While the originally developed protocols for radical generation remain in active use today, in recent years by a new array of radical generation strategies allow use of a wider variety of radical precursors that often operate under milder and more benign conditions. New transformations based on free radical reactivity are now available to a synthetic chemist looking to utilize a Minisci-type reaction. Radical-generation methods based on photoredox catalysis and electrochemistry, which utilize thermal cleavage or the in situ generation of reactive radical precursors, have become popular approaches. Our review will cover the remarkably literature that has appeared on this topic in recent 5 years, from 2015-01 to 2020-01, in an attempt to provide guidance to the synthetic chemist, on both the challenges that have been overcome and applications in organic synthesis.


1998 ◽  
Vol 53 (11) ◽  
pp. 1267-1272 ◽  
Author(s):  
Jörg J. Schneider ◽  
Dirk Wolf

The arene ligand exchange mechanism of slipped arene triple deckers [Bis{(η5-CpR)Co}-μ-{η4:η4-arene}] (R = Me5, 1,2,4 tri-tert butyl, arene = benzene, toluene) 1 was studied by 1H-NMR spectroscopy for different concentrations and solvents. It has been found that triple deckers of type 1 decompose slowly in solution. A unique equilibrium, between these triple deckers and the mixed sandwich complexes [(η6-arene)Co(η5-CpR)] and 14 e [(η5-Cp)Co]solv fragments generated in situ by decomposition o f 1 exists. In addition to this equilibrium arene lability of the thus formed mixed sandwich complex type has been detected by NMR making slipped triple deckers 1 ideal single source compounds for the generation of two [(η5-Cp)Co] fragments in one reaction step. Such fragments are valuable metal ligand components with high synthetic utility in organometallic chemistry.


2021 ◽  
Author(s):  
Vladislav S. Kostromitin ◽  
Artem A. Zemtsov ◽  
Vladimir A. Kokorekin ◽  
Vitalij V. Levin ◽  
Alexander D. Dilman

A method for the addition of fluorinated alkyl bromides to alkenes is described.


2016 ◽  
Vol 4 (25) ◽  
pp. 4430-4438 ◽  
Author(s):  
Jin-Tao Wang ◽  
Yanhang Hong ◽  
Xiaotian Ji ◽  
Mingming Zhang ◽  
Li Liu ◽  
...  

Poly(2-hydroxyethyl methacrylate)–bovine serum albumin core–corona particles were prepared using in situ activators generated by electron transfer for atom transfer radical polymerizations of HEMA initiated by a BSA macroinitiator.


2003 ◽  
Vol 56 (9) ◽  
pp. 903 ◽  
Author(s):  
Gavin E. Collis ◽  
Dieter Wege

Addition of 2-diazopropane to 1,4-naphthoquinone at low temperature, followed by in situ enolization and acetylation or silylation gave 3,3-dimethyl-1H-benz[f]indazol-4,9-diyl diacetate and 3,3-dimethyl-9-(t-butyl-dimethylsilyloxy)-1H-benz[f]indazol-4-ol, respectively. Functional group manipulation of the latter compound provided a number of other 4,9-disubstituted 3,3-dimethyl-3H-benz[f]indazoles. Irradiation of the diacetate led to clean extrusion of nitrogen to give the naphtho[b]cycloproparene and an alkene. Attempts to elaborate the cycloproparene into the derived cyclopropanaphthoquinone were unsuccessful. Of the other 4,9-disubstituted 3,3-dimethyl-3H-benz[f]indazoles examined, only the compound possessing an acetoxy group at C9 was photoactive, and afforded the expected cycloproparene and alkene. Compounds bearing a hydroxy or alkoxy group at C9 were photochemically inert.


Sign in / Sign up

Export Citation Format

Share Document