scholarly journals Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations

Science ◽  
2020 ◽  
Vol 367 (6481) ◽  
pp. 1026-1030 ◽  
Author(s):  
Maziar Raissi ◽  
Alireza Yazdani ◽  
George Em Karniadakis

For centuries, flow visualization has been the art of making fluid motion visible in physical and biological systems. Although such flow patterns can be, in principle, described by the Navier-Stokes equations, extracting the velocity and pressure fields directly from the images is challenging. We addressed this problem by developing hidden fluid mechanics (HFM), a physics-informed deep-learning framework capable of encoding the Navier-Stokes equations into the neural networks while being agnostic to the geometry or the initial and boundary conditions. We demonstrate HFM for several physical and biomedical problems by extracting quantitative information for which direct measurements may not be possible. HFM is robust to low resolution and substantial noise in the observation data, which is important for potential applications.

1985 ◽  
Vol 40 (8) ◽  
pp. 789-799 ◽  
Author(s):  
A. F. Borghesani

The Navier-Stokes equations for the fluid motion induced by a disk rotating inside a cylindrical cavity have been integrated for several values of the boundary layer thickness d. The equivalence of such a device to a rotating disk immersed in an infinite medium has been shown in the limit as d → 0. From that solution and taking into account edge effect corrections an equation for the viscous torque acting on the disk has been derived, which depends only on d. Moreover, these results justify the use of a rotating disk to perform accurate viscosity measurements.


2019 ◽  
Vol 40 (4) ◽  
pp. 2377-2398
Author(s):  
Gabriel R Barrenechea ◽  
Andreas Wachtel

Abstract Uniform inf-sup conditions are of fundamental importance for the finite element solution of problems in incompressible fluid mechanics, such as the Stokes and Navier–Stokes equations. In this work we prove a uniform inf-sup condition for the lowest-order Taylor–Hood pairs $\mathbb{Q}_2\times \mathbb{Q}_1$ and $\mathbb{P}_2\times \mathbb{P}_1$ on a family of affine anisotropic meshes. These meshes may contain refined edge and corner patches. We identify necessary hypotheses for edge patches to allow uniform stability and sufficient conditions for corner patches. For the proof, we generalize Verfürth’s trick and recent results by some of the authors. Numerical evidence confirms the theoretical results.


1972 ◽  
Vol 94 (2) ◽  
pp. 467-472 ◽  
Author(s):  
D. A. P. Jayasinghe ◽  
H. J. Leutheusser

This paper deals with elastic waves which may be generated in a fluid by the sudden movement of a flow boundary. In particular, an analysis of the classical piston, or signalling problem is presented for the special case of arbitrary velocity input into a stationary fluid contained in a circular, semi-infinite waveguide. The decay of the pulse, as well as the resulting flow development in the inlet region of the pipe are analyzed by means of an asymptotic expansion of the suitably nondimensionalized Navier-Stokes equations for a compressible, nonheat-conducting Newtonian fluid. The results differ significantly from those of the more conventional one-dimensional approach based on the so-called telegrapher’s equation of mathematical physics. The present theory realistically predicts the growth of a boundary layer both in time and position and, hence, it appears to represent the transient fluid motion in a manner which is physically more appealing.


Author(s):  
Guangding Wang ◽  
Huiqun Yuan ◽  
Hongyun Sun

In this paper, the stability of a flexible rotor partially filled with liquid is investigated. On the basis of the Navier-Stokes equations for the incompressible flow, a two-dimensional analytical model is developed for fluid motion. Applying the perturbation method, the linearized Navier-Stokes and continuity equations of fluid particles are obtained. Using the boundary conditions of fluid motion, the fluid forces exerted on the rotor are calculated. According to the established fluid-structure coupling model of the rotor system, the whirling frequency equation, which is applied to determine the stability of the system, is derived. The analysis results of the system stability are compared with the theoretical ones reported in the previous study. Good agreement is shown between the results of the present analysis and the literature results. The influences of the main parameters on the dynamic stability of the rotor system are discussed.


Author(s):  
Iraj Saeedpanah ◽  
M. Shayanfar ◽  
E. Jabbari ◽  
Mohammad Haji Mohammadi

Free surface flows are frequently encountered in hydraulic engineering problems including water jets, weirs and around gates. An iterative solution to the incompressible two-dimensional vertical steady Navier-Stokes equations, comprising momentum and continuity equations, is used to solve for the priori unknown free surface, the velocity and the pressure fields. The entire water body is covered by a unstructured finite element grid which is locally refined. The dynamic boundary condition is imposed for the free surface where the pressure vanishes. This procedure is done continuously until the normal velocities components vanish. To overcome numerical errors and oscillations encountering in convection terms, the SUPG (streamline upwinding Petrov-Galerkin) method is applied. The solution method is tested for different discharges onto a standard spillway geometries. The results shows good agreement with available experimental data.


1998 ◽  
Vol 08 (03) ◽  
pp. 431-444 ◽  
Author(s):  
JOËL CHASKALOVIC

Mathematical models applied to tornadoes describe these kinds of flows as an axisymmetric fluid motion which is restricted for not developing a source or a sink near the vortex line. Here, we propose the genesis of a family of a source/sink line into a singular updraft which can modeled one of the step of the genesis of a tornado. This model consists of a three-parameter family of fluid motions, satisfying the steady and incompressible Navier–Stokes equations, which vanish at the ground. We establish the local existence and uniqueness for these fields, at the neighborhood of a nonrotating singular updraft.


1996 ◽  
Vol 451 ◽  
Author(s):  
G. Marshall ◽  
P. Mocskos ◽  
F. Molina ◽  
S. Dengra

ABSTRACTRecent work demonstrates the relevant influence of convection during growth pattern formation in thin-layer electrochemical deposition. Convection is driven mainly by coulombic forces due to local charges at the tip of the aggregation and by buoyancy forces due to concentration gradients. Here we study through physical experiments and numerical modeling the regime under which coulombic forces are important. In the experimental measurements fluid motion near the growing tips of the deposit is visualized with neutrally buoyant latex spheres and its speed measured with videomicroscope tracking techniques and image processing software. The numerical modeling consists in the solution of the 2D dimensionless Nernst-Planck equations for ion concentrations, the Poisson equation for the electric field and the Navier-Stokes equations for the fluid flow, and a stochastic growth rule for ion deposition. A new set of dimensionless numbers governing electroconvection dominated flows is introduced. Preliminary experimental measurements and numerical results indicate that in the electroconvection dominated regime coulombic forces increase with the applied voltage, and their influence over growth pattern formation can be assessed with the magnitude of the dimensionless electric Froude number. It is suggested that when this number decreases the deposit morphology changes from fractal to dense branching.


Author(s):  
Pascal Weber ◽  
Georgios Arampatzis ◽  
Guido Novati ◽  
Siddhartha Verma ◽  
Costas Papadimitriou ◽  
...  

Fish schooling implies an awareness of the swimmers for their companions. In flow mediated environments, in addition to visual cues, pressure and shear sensors on the fish body are critical for providing quantitative information that assists the quantification of proximity to other swimmers. Here we examine the distribution of sensors on the surface of an artificial swimmer so that it can optimally identify a leading group of swimmers. We employ Bayesian experimental design coupled with two-dimensional Navier Stokes equations for multiple self-propelled swimmers. The follower tracks the school using information from its own surface pressure and shear stress. We demonstrate that the optimal sensor distribution of the follower is qualitatively similar to the distribution of neuromasts on fish. Our results show that it is possible to identify accurately the center of mass and even the number of the leading swimmers using surface only information.


Biomimetics ◽  
2020 ◽  
Vol 5 (1) ◽  
pp. 10
Author(s):  
Pascal Weber ◽  
Georgios Arampatzis ◽  
Guido Novati ◽  
Siddhartha Verma ◽  
Costas Papadimitriou ◽  
...  

Fish schooling implies an awareness of the swimmers for their companions. In flow mediated environments, in addition to visual cues, pressure and shear sensors on the fish body are critical for providing quantitative information that assists the quantification of proximity to other fish. Here we examine the distribution of sensors on the surface of an artificial swimmer so that it can optimally identify a leading group of swimmers. We employ Bayesian experimental design coupled with numerical simulations of the two-dimensional Navier Stokes equations for multiple self-propelled swimmers. The follower tracks the school using information from its own surface pressure and shear stress. We demonstrate that the optimal sensor distribution of the follower is qualitatively similar to the distribution of neuromasts on fish. Our results show that it is possible to identify accurately the center of mass and the number of the leading swimmers using surface only information.


Sign in / Sign up

Export Citation Format

Share Document