Genomic architecture of a genetically assimilated seasonal color pattern

Science ◽  
2020 ◽  
Vol 370 (6517) ◽  
pp. 721-725
Author(s):  
Karin R. L. van der Burg ◽  
James J. Lewis ◽  
Benjamin J. Brack ◽  
Richard A. Fandino ◽  
Anyi Mazo-Vargas ◽  
...  

Developmental plasticity allows genomes to encode multiple distinct phenotypes that can be differentially manifested in response to environmental cues. Alternative plastic phenotypes can be selected through a process called genetic assimilation, although the mechanisms are still poorly understood. We assimilated a seasonal wing color phenotype in a naturally plastic population of butterflies (Junonia coenia) and characterized three responsible genes. Endocrine assays and chromatin accessibility and conformation analyses showed that the transition of wing coloration from an environmentally determined trait to a predominantly genetic trait occurred through selection for regulatory alleles of downstream wing-patterning genes. This mode of genetic evolution is likely favored by selection because it allows tissue- and trait-specific tuning of reaction norms without affecting core cue detection or transduction mechanisms.

2009 ◽  
Vol 87 (11) ◽  
pp. 1044-1051 ◽  
Author(s):  
M. Karlsson ◽  
J. Johansson ◽  
S. Caesar ◽  
A. Forsman

Color polymorphisms in animals may result from genetic polymorphisms, developmental plasticity, or a combination where some phenotypic components are under strong genetic control and other aspects are influenced by developmental plasticity. Understanding how color polymorphisms evolve demands knowledge of how genetic and epigenetic environmental cues influence the development and phenotypic expression of organisms. Pygmy grasshoppers (Orthoptera, Tetrigidae) vary in color pattern within and among populations. Color morphs differ in morphology, behavior, and life history, suggesting that they represent alternative ecological strategies. Pygmy grasshoppers also show fire melanism, a rapid increase in the frequency of black and dark-colored phenotypes in populations inhabiting fire-ravaged areas. We examined the influence of plasticity on color polymorphism in the pygmy grasshopper Tetrix subulata (L., 1761) using a split-brood design. Individuals were experimentally raised in solitude on either crushed charcoal or white aquarium gravel. Our analyses uncovered no plasticity of either color pattern or overall darkness of coloration in response to rearing substrate. Instead, we find a strong resemblance between maternal and offspring color patterns. We conclude that pygmy grasshopper color morphs are strongly influenced by genetic cues or maternal effects, and that there is no evidence for developmental plasticity of coloration in response to rearing conditions in these insects.


1961 ◽  
Vol 93 (4) ◽  
pp. 260-266 ◽  
Author(s):  
Clifford Johnson

The objective of this study is to describe the copulatory and ovipositional behaviour of Hetaerina americana and H. titia, and to depict any differences in such behaviour as may exist between these two species. It is quite important in such studies to understand the mechanisms which assure conspecific mating. Both americana and titia are found breeding together on many of the streams of central Texas. Williamson (1906) pointed out that species in which the abdominal appendages were very similar often had sexually dimorphic and/or specifically distinct wing coloration, while species with clear wings had quite distinct abdominal appendages. These different wing patterns were suggested as functioning in species recognition for conspecific mating. Buchholtz (1951, 1955) experimentally verified that the females of Calopteryx splendens recognize and respond to males of their own species through a set of optical stimuli including the color pattern of the wing. Loibl (1958) and Krieger and Krieger-Lobl (1958) experimentally demonstrated that in Lestes dryas, L. sponsa, Ischnura elegans and I. pumila, all of which have clear, colorless wings, the species recognition factors are the shape of the abdominal appendages and body coloration. Williamson's early inferences appear to have been well documented.


2013 ◽  
Vol 2013 ◽  
pp. 1-4 ◽  
Author(s):  
Simone Fulda

While necroptosis has for long been viewed as an accidental mode of cell death triggered by physical or chemical damage, it has become clear over the last years that necroptosis can also represent a programmed form of cell death in mammalian cells. Key discoveries in the field of cell death research, including the identification of critical components of the necroptotic machinery, led to a revised concept of cell death signaling programs. Several regulatory check and balances are in place in order to ensure that necroptosis is tightly controlled according to environmental cues and cellular needs. This network of regulatory mechanisms includes metabolic pathways, especially those linked to mitochondrial signaling events. A better understanding of these signal transduction mechanisms will likely contribute to open new avenues to exploit our knowledge on the regulation of necroptosis signaling for therapeutic application in the treatment of human diseases.


2019 ◽  
Vol 59 (5) ◽  
pp. 1281-1289 ◽  
Author(s):  
Rayleigh Palmer ◽  
Kenneth Z McKenna ◽  
H F Nijhout

Abstract The color patterns of butterflies moths are exceptionally diverse, but are very stable within a species, so that most species can be identified on the basis of their color pattern alone. The color pattern is established in the wing imaginal disc during a prolonged period of growth and differentiation, beginning during the last larval instar and ending during the first few days of the pupal stage. During this period, a variety of diffusion and reaction–diffusion signaling mechanisms determine the positions and sizes of the various elements that make up the overall color pattern. The patterning occurs while the wing is growing from a small imaginal disc to a very large pupal wing. One would therefore expect that some or all aspects of the color pattern would be sensitive to the size of the developmental field on which pattern formation takes place. To study this possibility, we analyzed the color patterns of Junonia coenia from animals whose growth patterns were altered by periodic starvation during larval growth, which produced individuals with a large range of variation in body size and wing size. Analyses of the color patterns showed that the positions and size of the pattern elements scaled perfectly isometrically with wing size. This is a puzzling finding and suggests the operation of a homeostatic or robustness mechanism that stabilizes pattern in spite of variation in the growth rate and final size of the wing.


Insects ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 176
Author(s):  
Shuang Li ◽  
Dong-Nan Cui ◽  
Hidayat Ullah ◽  
Jun Chen ◽  
Shao-Fang Liu ◽  
...  

We analyzed the transcriptomes of Romalea microptera grasshoppers after 8 years of artificial selection for either long or short thoraces. Evolution proceeded rapidly during the experiment, with a 13.3% increase and a 32.2% decrease in mean pronotum lengths (sexes combined) in the up- and down-selected colonies, respectively, after only 11 generations. At least 16 additional traits also diverged between the two colonies during the selection experiment. Transcriptomic analysis identified 693 differentially expressed genes, with 386 upregulated and 307 downregulated (55.7% vs. 44.3%), including cellular process, metabolic process, binding, general function prediction only, and signal transduction mechanisms. Many of the differentially expressed genes (DEGs) are known to influence animal body size.


1985 ◽  
Vol 33 (6) ◽  
pp. 837 ◽  
Author(s):  
JH Rienks

Photoperiod and temperature during development were shown to control the phenotype of adults of Catopsilia pomona pomona in a population in Queensland. These environmental cues controlled pattern and colour elements of the phenotype to different extents, and the responses of males and females differed. Weather experienced in the 5th larval instar and pupal stage determined the adult phenotype. Differences in the responses of the progeny of February and July adults may have reflected differential survival of different genotypes over the dry season, through selection for the seasonally appropriate phenotype. The adaptive significance of the 2 seasonal forms is not known.


aBIOTECH ◽  
2021 ◽  
Author(s):  
Xiaoya Lin ◽  
Chao Fang ◽  
Baohui Liu ◽  
Fanjiang Kong

AbstractFlowering links vegetative growth and reproductive growth and involves the coordination of local environmental cues and plant genetic information. Appropriate timing of floral initiation and maturation in both wild and cultivated plants is important to their fitness and productivity in a given growth environment. The domestication of plants into crops, and later crop expansion and improvement, has often involved selection for early flowering. In this review, we analyze the basic rules for photoperiodic adaptation in several economically important and/or well-researched crop species. The ancestors of rice (Oryza sativa), maize (Zea mays), soybean (Glycine max), and tomato (Solanum lycopersicum) are short-day plants whose photosensitivity was reduced or lost during domestication and expansion to high-latitude areas. Wheat (Triticum aestivum) and barley (Hordeum vulgare) are long-day crops whose photosensitivity is influenced by both latitude and vernalization type. Here, we summarize recent studies about where these crops were domesticated, how they adapted to photoperiodic conditions as their growing area expanded from domestication locations to modern cultivating regions, and how allelic variants of photoperiodic flowering genes were selected during this process. A deeper understanding of photoperiodic flowering in each crop will enable better molecular design and breeding of high-yielding cultivars suited to particular local environments.


Sign in / Sign up

Export Citation Format

Share Document