scholarly journals Replication timing maintains the global epigenetic state in human cells

Science ◽  
2021 ◽  
Vol 372 (6540) ◽  
pp. 371-378
Author(s):  
Kyle N. Klein ◽  
Peiyao A. Zhao ◽  
Xiaowen Lyu ◽  
Takayo Sasaki ◽  
Daniel A. Bartlett ◽  
...  

The temporal order of DNA replication [replication timing (RT)] is correlated with chromatin modifications and three-dimensional genome architecture; however, causal links have not been established, largely because of an inability to manipulate the global RT program. We show that loss of RIF1 causes near-complete elimination of the RT program by increasing heterogeneity between individual cells. RT changes are coupled with widespread alterations in chromatin modifications and genome compartmentalization. Conditional depletion of RIF1 causes replication-dependent disruption of histone modifications and alterations in genome architecture. These effects were magnified with successive cycles of altered RT. These results support models in which the timing of chromatin replication and thus assembly plays a key role in maintaining the global epigenetic state.

Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 266
Author(s):  
Shin-ichiro Takebayashi ◽  
Tyrone Ryba ◽  
Kelsey Wimbish ◽  
Takuya Hayakawa ◽  
Morito Sakaue ◽  
...  

Multiple epigenetic pathways underlie the temporal order of DNA replication (replication timing) in the contexts of development and disease. DNA methylation by DNA methyltransferases (Dnmts) and downstream chromatin reorganization and transcriptional changes are thought to impact DNA replication, yet this remains to be comprehensively tested. Using cell-based and genome-wide approaches to measure replication timing, we identified a number of genomic regions undergoing subtle but reproducible replication timing changes in various Dnmt-mutant mouse embryonic stem (ES) cell lines that included a cell line with a drug-inducible Dnmt3a2 expression system. Replication timing within pericentromeric heterochromatin (PH) was shown to be correlated with redistribution of H3K27me3 induced by DNA hypomethylation: Later replicating PH coincided with H3K27me3-enriched regions. In contrast, this relationship with H3K27me3 was not evident within chromosomal arm regions undergoing either early-to-late (EtoL) or late-to-early (LtoE) switching of replication timing upon loss of the Dnmts. Interestingly, Dnmt-sensitive transcriptional up- and downregulation frequently coincided with earlier and later shifts in replication timing of the chromosomal arm regions, respectively. Our study revealed the previously unrecognized complex and diverse effects of the Dnmts loss on the mammalian DNA replication landscape.


2021 ◽  
Author(s):  
Dashiell J Massey ◽  
Amnon Koren

DNA replication occurs throughout the S phase of the cell cycle, initiating from replication origin loci that fire at different times. Debate remains about whether origins are a fixed set of loci used across all cells or a loose agglomeration of potential origins used stochastically in individual cells, and about how consistent their firing time during S phase is across cells. Here, we develop an approach for profiling DNA replication in single human cells and apply it to 2,305 replicating cells spanning the entire S phase. The resolution and scale of the data enabled us to specifically analyze initiation sites and show that these sites have confined locations that are consistently used among individual cells. Further, we find that initiation sites are activated in a similar, albeit not fixed, order across cells. Taken together, our results suggest that replication timing variability is constrained both spatially and temporally, and that the degree of variation is consistent across human cell lines.


2020 ◽  
Vol 71 (20) ◽  
pp. 6262-6272 ◽  
Author(s):  
Alžběta Němečková ◽  
Veronika Koláčková ◽  
Jan Vrána ◽  
Jaroslav Doležel ◽  
Eva Hřibová

Abstract Despite much recent progress, our understanding of the principles of plant genome organization and its dynamics in three-dimensional space of interphase nuclei remains surprisingly limited. Notably, it is not clear how these processes could be affected by the size of a plant’s nuclear genome. In this study, DNA replication timing and interphase chromosome positioning were analyzed in seven Poaceae species that differ in their genome size. To provide a comprehensive picture, a suite of advanced, complementary methods was used: labeling of newly replicated DNA by ethynyl-2'-deoxyuridine, isolation of nuclei at particular cell cycle phases by flow cytometric sorting, three-dimensional immunofluorescence in situ hybridization, and confocal microscopy. Our results revealed conserved dynamics of DNA replication in all species, and a similar replication timing order for telomeres and centromeres, as well as for euchromatin and heterochromatin regions, irrespective of genome size. Moreover, stable chromosome positioning was observed while transitioning through different stages of interphase. These findings expand upon earlier studies in suggesting that a more complex interplay exists between genome size, organization of repetitive DNA sequences along chromosomes, and higher order chromatin structure and its maintenance in interphase, albeit controlled by currently unknown factors.


Genes ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 196 ◽  
Author(s):  
Phoebe Oldach ◽  
Conrad A. Nieduszynski

3D genome organization is strongly predictive of DNA replication timing in mammalian cells. This work tested the extent to which loop-based genome architecture acts as a regulatory unit of replication timing by using an auxin-inducible system for acute cohesin ablation. Cohesin ablation in a population of cells in asynchronous culture was shown not to disrupt patterns of replication timing as assayed by replication sequencing (RepliSeq) or BrdU-focus microscopy. Furthermore, cohesin ablation prior to S phase entry in synchronized cells was similarly shown to not impact replication timing patterns. These results suggest that cohesin-mediated genome architecture is not required for the execution of replication timing patterns in S phase, nor for the establishment of replication timing domains in G1.


2014 ◽  
Vol 10 (3) ◽  
pp. 722 ◽  
Author(s):  
Yevgeniy Gindin ◽  
Manuel S Valenzuela ◽  
Mirit I Aladjem ◽  
Paul S Meltzer ◽  
Sven Bilke

2017 ◽  
Vol 114 (15) ◽  
pp. E3061-E3070 ◽  
Author(s):  
Umut Eser ◽  
Devon Chandler-Brown ◽  
Ferhat Ay ◽  
Aaron F. Straight ◽  
Zhijun Duan ◽  
...  

The genome of metazoan cells is organized into topologically associating domains (TADs) that have similar histone modifications, transcription level, and DNA replication timing. Although similar structures appear to be conserved in fission yeast, computational modeling and analysis of high-throughput chromosome conformation capture (Hi-C) data have been used to argue that the small, highly constrained budding yeast chromosomes could not have these structures. In contrast, herein we analyze Hi-C data for budding yeast and identify 200-kb scale TADs, whose boundaries are enriched for transcriptional activity. Furthermore, these boundaries separate regions of similarly timed replication origins connecting the long-known effect of genomic context on replication timing to genome architecture. To investigate the molecular basis of TAD formation, we performed Hi-C experiments on cells depleted for the Forkhead transcription factors, Fkh1 and Fkh2, previously associated with replication timing. Forkhead factors do not regulate TAD formation, but do promote longer-range genomic interactions and control interactions between origins near the centromere. Thus, our work defines spatial organization within the budding yeast nucleus, demonstrates the conserved role of genome architecture in regulating DNA replication, and identifies a molecular mechanism specifically regulating interactions between pericentric origins.


2020 ◽  
Author(s):  
Qian Du ◽  
Grady C. Smith ◽  
Phuc Loi Luu ◽  
James M. Ferguson ◽  
Nicola J. Armstrong ◽  
...  

AbstractDNA replication timing and three-dimensional (3D) genome organisation occur across large domains associated with distinct epigenome patterns to functionally compartmentalise genome regulation. However, it is still unclear if alternations in the epigenome, in particular cancer-related DNA hypomethylation, can directly result in alterations to cancer higher order genome architecture. Here, we use Hi-C and single cell Repli-Seq, in the colorectal cancer DNMT1 and DNMT3B DNA methyltransferases double knockout model, to determine the impact of DNA hypomethylation on replication timing and 3D genome organisation. First, we find that the hypomethylated cells show a striking loss of replication timing precision with gain of cell-to-cell replication timing heterogeneity and loss of 3D genome compartmentalisation. Second, hypomethylated regions that undergo a large change in replication timing also show loss of allelic replication timing, including at cancer-related genes. Finally, we observe the formation of broad ectopic H3K4me3-H3K9me3 domains across hypomethylated regions where late replication is maintained, that potentially prevent aberrant transcription and loss of genome organisation after DNA demethylation. Together, our results highlight a previously underappreciated role for DNA methylation in maintenance of 3D genome architecture.


2019 ◽  
Author(s):  
Dan Sarni ◽  
Takayo Sasaki ◽  
Karin Miron ◽  
Michal Irony Tur-Sinai ◽  
Juan Carlos Rivera-Mulia ◽  
...  

AbstractCommon fragile sties (CFSs) are regions susceptible to replication stress and are hotspots for chromosomal instability in cancer. Several features characterizing CFSs have been associated with their instability, however, these features are prevalent across the genome and do not account for all known CFSs. Therefore, the molecular mechanism underlying CFS instability remains unclear. Here, we explored the transcriptional profile and temporal order of DNA replication (replication timing, RT) of cells under replication stress conditions. We show that the RT of only a small portion of the genome is affected by replication stress, and that CFSs are enriched for delayed RT. We identified a signature for chromosomal fragility, comprised of replication stress-induced delay in RT of early/mid S-phase replicating regions within actively transcribed large genes. This fragility signature enabled precise mapping of the core fragility region. Furthermore, the signature enabled the identification of novel fragile sites that were not detected cytogenetically, highlighting the improved sensitivity of our approach for identifying fragile sites. Altogether, this study reveals a link between altered DNA replication and transcription of large genes underlying the mechanism of CFS expression. Thus, investigating the RT and transcriptional changes in cancer may contribute to the understanding of mechanisms promoting genomic instability in cancer.


2017 ◽  
Author(s):  
Dzmitry G. Batrakou ◽  
Emma D. Heron ◽  
Conrad A. Nieduszynski

ABSTRACTGenomes are replicated in a reproducible temporal pattern. Current methods for assaying allele replication timing are time consuming and/or expensive. These include high-throughput sequencing which can be used to measure DNA copy number as a proxy for allele replication timing. Here, we use droplet digital PCR to study DNA replication timing at multiple loci in budding yeast and human cells. We establish that the method has temporal and spatial resolutions comparable to the high-throughput sequencing approaches, while being faster than alternative locus-specific methods. Furthermore, the approach is capable of allele discrimination. We apply this method to determine relative replication timing across timing transition zones in cultured human cells. Finally, multiple samples can be analysed in parallel, allowing us to rapidly screen kinetochore mutants for perturbation to centromere replication timing. Therefore, this approach is well suited to the study of locus-specific replication and the screening of cis- and trans-acting mutants to identify mechanisms that regulate local genome replication timing.


Sign in / Sign up

Export Citation Format

Share Document