Strength through high slip-plane density

Science ◽  
2021 ◽  
Vol 374 (6570) ◽  
pp. 940-941
Author(s):  
Jien-Wei Yeh
Keyword(s):  
RSC Advances ◽  
2015 ◽  
Vol 5 (12) ◽  
pp. 8609-8621 ◽  
Author(s):  
Ting-Ting Zhou ◽  
Yan-Geng Zhang ◽  
Jian-Feng Lou ◽  
Hua-Jie Song ◽  
Feng-Lei Huang

Anisotropic sensitivity is related to the different intermolecular steric arrangements across the slip plane induced by shock compression along various orientations.


1973 ◽  
Vol 18 (2) ◽  
pp. 427-438 ◽  
Author(s):  
L. M. Clarebrough
Keyword(s):  

CrystEngComm ◽  
2021 ◽  
Author(s):  
Benjamin P. A. Gabriele ◽  
Craig J. Williams ◽  
Matthias E. Lauer ◽  
Brian Derby ◽  
Aurora J. Cruz-Cabeza

Nanoindentation measurements in single crystals of carbamazepine form III show that the (020) face is stiffer and harder than the (002) and (101) faces. AFM imaging and molecular simulations reveal that the (020) plane is the most likely slip plane.


2018 ◽  
Vol 18 (12) ◽  
pp. 04018170 ◽  
Author(s):  
Xiangnan Wang ◽  
Peng Yu ◽  
Jialin Yu ◽  
Yuzhen Yu ◽  
He Lv

1983 ◽  
Vol 22 ◽  
Author(s):  
A.V. Dobromyslov ◽  
G.V. Dolgikh ◽  
N.I. Talutz ◽  
V.T. Shmatov ◽  
B. I. Beresnev

ABSTRACTThe effect of the pressure 550MPa on the choice of the acting slip plane in the single crystals of Fe−2,9%Si was studied. It was established that the presence of pressure resulted in the increase of the slip asymmetry. The effect of pressure is attributed to the action of normal stresses and to the special structure of screw dislocations.


1998 ◽  
Vol 552 ◽  
Author(s):  
Q. Feng ◽  
S. H.

ABSTRACTThe temperature as well as orientation dependence in anomalous hardening occurs in single crystal Ti-56AI between 673K and 1073K under single slip of ordinary dislocations. The ordinary dislocations (1/2<110]) are gliding not only on (111) plane but also on (110) plane in the temperature range where the anomalous hardening occurs in single crystal Ti-56A1. The TEM study shows that the (110) cross-slip of ordinary dislocations is a double cross-slip in nature in which first, the dislocations cross-slip from the primary (111) slip plane to (110) plane followed by cross-slipping again onto another primary slip plane. This double cross-slip leaves a pair of edge segments 'superjogs' in (110) planes. It appears that these superjogs are immobile in the forward direction and act as pinning points. Furthermore, these pinning points would act as a Frank-Read source for the double cross-slipped dislocations, which generate dislocation loops as well as dislocation dipoles. The pinning structure, multiplane dislocation loops, and dipoles of double cross-slip origin all contribute to anomalous hardening at high temperatures in this material.


2018 ◽  
Vol 841 ◽  
pp. 883-924 ◽  
Author(s):  
A. Simha ◽  
J. Mo ◽  
P. J. Morrison

Problems of particle dynamics involving unsteady Stokes flows in confined geometries are typically harder to solve than their steady counterparts. Approximation techniques are often the only resort. Felderhof (see e.g. J. Phys. Chem. B, vol. 109 (45), 2005, pp. 21406–21412; J. Fluid Mech., vol. 637, 2009, pp. 285–303) has developed a point-particle approximation framework to solve such problems, especially in the context of Brownian motion. Despite excellent agreement with past experiments, this framework produces unsteady drag coefficients that depend on particle density. This is inconsistent, since the problem can be formulated mathematically without any reference to the particle’s density. We address this inconsistency in our work. Upon implementing our modifications, the framework passes consistency checks that it previously failed. Further, it is not obvious that such an approximation should work for short-time-scale motion. We investigate its validity by deriving it from a general formalism based on integral equations through a series of systematic approximations. We also compare results from the point-particle framework against a calculation performed using the method of reflections, for the specific case of a sphere near a full-slip plane boundary. We find from our analysis that the reasons for the success of the point-particle approximation are subtle and have to do with the nature of the unsteady Oseen tensor. Finally, we provide numerical predictions for Brownian motion near a full-slip and a no-slip plane wall based on the point-particle approximation as used by Felderhof, our modified point-particle approximation and the method of reflections. We show that our modifications to Felderhof’s framework would become significant for systems of metallic nanoparticles in liquids.


Sign in / Sign up

Export Citation Format

Share Document