scholarly journals Tissue engineering toward temporomandibular joint disc regeneration

2018 ◽  
Vol 10 (446) ◽  
pp. eaaq1802 ◽  
Author(s):  
Natalia Vapniarsky ◽  
Le W. Huwe ◽  
Boaz Arzi ◽  
Meghan K. Houghton ◽  
Mark E. Wong ◽  
...  

Treatments for temporomandibular joint (TMJ) disc thinning and perforation, conditions prevalent in TMJ pathologies, are palliative but not reparative. To address this, scaffold-free tissue-engineered implants were created using allogeneic, passaged costal chondrocytes. A combination of compressive and bioactive stimulation regimens produced implants with mechanical properties akin to those of the native disc. Efficacy in repairing disc thinning was examined in minipigs. Compared to empty controls, treatment with tissue-engineered implants restored disc integrity by inducing 4.4 times more complete defect closure, formed 3.4-fold stiffer repair tissue, and promoted 3.2-fold stiffer intralaminar fusion. The osteoarthritis score (indicative of degenerative changes) of the untreated group was 3.0-fold of the implant-treated group. This tissue engineering strategy paves the way for developing tissue-engineered implants as clinical treatments for TMJ disc thinning.

2003 ◽  
Vol 125 (4) ◽  
pp. 558-565 ◽  
Author(s):  
Michael S. Detamore ◽  
Kyriacos A. Athanasiou

Despite the significant morbidity associated with the temporomandibular joint (TMJ), little is known about the pathophysiology of this complex joint. TMJ disc degeneration plays a central role in the progression of TMJ disorders, and therefore disc regeneration would be a crucial treatment modality. Unfortunately, scarce information about the structural and functional characteristics of the TMJ disc is available. The current study aims to provide a standard for the biomechanical behavior of the TMJ disc for future tissue engineering studies. The disc was loaded under uniaxial tension in two directions, mediolateral and anteroposterior, and in three locations per direction. In the mediolateral direction, the posterior band was 2.5 times stiffer, 2.4 times tougher (energy to maximum stress), and 2.2 times stronger than the anterior band, which was in turn 16 times stiffer and 5.7 times stronger than the intermediate zone. In the anteroposterior direction, the central and medial regions were 74% and 35% stiffer and 56% and 59% stronger than the lateral region, respectively, although similar to each other in strength and stiffness. There was no significant difference in toughness between regions in the anteroposterior direction. These results correlated qualitatively with collagen fiber orientation and fiber size obtained using polarized light microscopy.


Author(s):  
Catherine K. Hagandora ◽  
Alejandro J. Almarza

The temporomandibular joint (TMJ) is a synovial, bilateral joint formed by the articulation of the condyle of the mandible and the articular eminence and glenoid fossa of the temporal bone. The articulating tissues of the joint include the TMJ disc and the mandibular condylar cartilage (MCC). It is estimated that 10 million Americans are affected by TMJ disorders (TMDs), a term encompassing a variety of conditions which result in positional or structural abnormalities in the joint. [1] Characterization of the properties of the articulating tissues of the joint is a necessary prequel to understanding the process of pathogenesis as well as tissue engineering suitable constructs for replacement of damaged joint fibrocartilage. Furthermore, the current literature lacks a one-to-one comparison of the regional compressive behavior of the goat MCC to the TMJ disc.


2021 ◽  
Vol 8 ◽  
Author(s):  
Ping Yi ◽  
Jiadi Liang ◽  
Futing Huang ◽  
Zuodong Zhao ◽  
Xiaohui Zhou ◽  
...  

Tissue engineering is a promising approach to restore or replace a damaged temporomandibular joint (TMJ) disc. However, constructing a scaffold that can mimic biomechanical and biological properties of the natural TMJ disc remains a challenge. In this study, three-dimensional (3D) printing technology was used to fabricate polycaprolactone (PCL)/polyurethane (PU) scaffolds and PU scaffolds to imitate the region-specific biomechanical properties of the TMJ disc. The scaffolds were coated with polydopamine (PDA) and combined with a decellularized matrix (dECM). Then, rat costal chondrocytes and mouse L929 fibroblasts, respectively, were suspended on the composite scaffolds and the biological functions of the cells were studied. The properties of the scaffolds were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), contact angle analysis, and biomechanical testing. To verify the biocompatibility of the scaffolds, the viability, proliferation, and extracellular matrix (ECM) production of the cells seeded on the scaffolds were assessed by LIVE/DEAD staining, Cell Counting Kit-8 assay, biochemical content analysis, immunofluorescence staining, and qRT-PCR. The functionalized hybrid scaffolds were then implanted into the subcutaneous space of nude mice for 6 weeks, and the regenerated tissue was evaluated by histological staining. The biomechanical properties of PCL/PU and PU scaffolds were comparable to that of the central and peripheral zones, respectively, of a native human TMJ disc. The PDA-coated scaffolds displayed superior biomechanical, structural, and functional properties, creating a favorable microenvironment for cell survival, proliferation, ECM production, and tissue regeneration. In conclusion, 3D-printed polymer scaffolds coated with PDA and combined with dECM hydrogel were found to be a promising substitute for TMJ disc tissue engineering.


2019 ◽  
Vol 1 (1) ◽  
pp. 68-73 ◽  
Author(s):  
Yi-Shu Liu ◽  
Adrian U-Jin Yap ◽  
Jie Lei ◽  
Kai-Yuan Fu

Background: The causes of mandibular condylar hypoplasia can be congenital or acquired in nature. Cited local causes of acquired hypoplasia include trauma, infection and irradiation. We report a case of hypoplastic condyle that was attributed to temporomandibular joint (TMJ) disc displacement without reduction (DDwoR). Clinical Presentation: A 16-year-old male presented with restricted mouth opening and right TMJ pain for 6 months. He was subsequently diagnosed with DDwoR. Conservative treatment comprising self-care and moist-heat therapy was administered and he was followed for 27 months without any further interventions. During this period, transitions from “normal” morphology to condylar flattening / erosion, and eventually a re-modeled smaller “normal” right TMJ were observed. Conclusion: The present case provided initial support that DDwoR could be a plausible cause of condylar hypoplasia in adolescents / young adults.


Sign in / Sign up

Export Citation Format

Share Document