scholarly journals Nucleoside-modified mRNA vaccination partially overcomes maternal antibody inhibition of de novo immune responses in mice

2020 ◽  
Vol 12 (525) ◽  
pp. eaav5701 ◽  
Author(s):  
Elinor Willis ◽  
Norbert Pardi ◽  
Kaela Parkhouse ◽  
Barbara L. Mui ◽  
Ying K. Tam ◽  
...  

Maternal antibodies provide short-term protection to infants against many infections. However, they can inhibit de novo antibody responses in infants elicited by infections or vaccination, leading to increased long-term susceptibility to infectious diseases. Thus, there is a need to develop vaccines that are able to elicit protective immune responses in the presence of antigen-specific maternal antibodies. Here, we used a mouse model to demonstrate that influenza virus–specific maternal antibodies inhibited de novo antibody responses in mouse pups elicited by influenza virus infection or administration of conventional influenza vaccines. We found that a recently developed influenza vaccine, nucleoside-modified mRNA encapsulated in lipid nanoparticles (mRNA-LNP), partially overcame this inhibition by maternal antibodies. The mRNA-LNP influenza vaccine established long-lived germinal centers in the mouse pups and elicited stronger antibody responses than did a conventional influenza vaccine approved for use in humans. Vaccination with mRNA-LNP vaccines may offer a promising strategy for generating robust immune responses in infants in the presence of maternal antibodies.

2020 ◽  
Author(s):  
Minami Nagai ◽  
Miyu Moriyama ◽  
Takeshi Ichinohe

AbstractGut microbiota plays a critical role in the induction of adaptive immune responses to influenza virus infection. However, the role of nasal bacteria in the induction of the virus-specific adaptive immunity is less clear. Here we demonstrate that while intranasal administration of influenza virus hemagglutinin vaccine alone was insufficient to induce the vaccine-specific antibody responses, disruption of nasal bacteria by lysozyme or addition of culturable oral bacteria from a healthy human volunteer rescued inability of the nasal bacteria to generate antibody responses to intranasally administered the split-virus vaccine. Myd88-depdnent signaling in the hematopoietic compartment was required for adjuvant activity of intranasally administered oral bacteria. In addition, we found that the oral bacteria-combined intranasal vaccine induced protective antibody response to influenza virus and SARS-CoV-2 infection. Our findings here have identified a previously unappreciated role for nasal bacteria in the induction of the virus-specific adaptive immune responses.


2021 ◽  
Author(s):  
Paul Rider ◽  
Harrison Dulin ◽  
Ifeanyi Kingsley Uche ◽  
Michael McGee ◽  
Blake Breitenstein ◽  
...  

Influenza virus is a major respiratory viral pathogen responsible for the deaths of hundreds of thousands worldwide each year. Current vaccines provide protection primarily by inducing strain-specific antibody responses with the requirement of a match between vaccine strains and circulating strains. It has been suggested that anti-influenza T-cell responses, in addition to antibody responses may provide the broadest protection against different flu strains. Therefore, to address this urgent need, it is desirable to develop a vaccine candidate with an ability to induce balanced adaptive immunity including cell mediated immune responses. A live viral vector technology should exhibit safety, immunogenicity, effectiveness in the presence of pre-existing immunity, and the ability to induce mucosal immune responses. Here, we used VC2, an established Herpes Simplex Virus type 1 vaccine vector, to express the influenza HA protein. We show that this virus is capable of generating potent and specific anti-influenza humoral and cell-mediated immune responses. We further show that a single vaccination with the VC2-derived influenza vaccine protects mice from lethal challenge with influenza virus. Our data support the continued development of VC2-derived influenza vaccines for protection of human populations from both seasonal and pandemic strains of influenza. Finally, our results support the potential of VC2-derived vaccines as a platform for the rapid development of vaccines against emerging and established pathogens, particularly respiratory pathogens.


2015 ◽  
Vol 90 (2) ◽  
pp. 1023-1033 ◽  
Author(s):  
Gerrit Koopman ◽  
Petra Mooij ◽  
Liesbeth Dekking ◽  
Daniëlla Mortier ◽  
Ivonne G. Nieuwenhuis ◽  
...  

ABSTRACTInfluenza virus infection of nonhuman primates is a well-established animal model for studying pathogenesis and for evaluating prophylactic and therapeutic intervention strategies. However, usually a standard dose is used for the infection, and there is no information on the relation between challenge dose and virus replication or the induction of immune responses. Such information is also very scarce for humans and largely confined to evaluation of attenuated virus strains. Here, we have compared the effect of a commonly used dose (4 × 10650% tissue culture infective doses) versus a 100-fold-higher dose, administered by intrabronchial installation, to two groups of 6 cynomolgus macaques. Animals infected with the high virus dose showed more fever and had higher peak levels of gamma interferon in the blood. However, virus replication in the trachea was not significantly different between the groups, although in 2 out of 6 animals from the high-dose group it was present at higher levels and for a longer duration. The virus-specific antibody response was not significantly different between the groups. However, antibody enzyme-linked immunosorbent assay, virus neutralization, and hemagglutination inhibition antibody titers correlated with cumulative virus production in the trachea. In conclusion, using influenza virus infection in cynomolgus macaques as a model, we demonstrated a relationship between the level of virus production upon infection and induction of functional antibody responses against the virus.IMPORTANCEThere is only very limited information on the effect of virus inoculation dose on the level of virus production and the induction of adaptive immune responses in humans or nonhuman primates. We found only a marginal and variable effect of virus dose on virus production in the trachea but a significant effect on body temperature. The induction of functional antibody responses, including virus neutralization titer, hemagglutination inhibition titer, and antibody-dependent cell-mediated cytotoxicity, correlated with the level of virus replication measured in the trachea. The study reveals a relationship between virus production and functional antibody formation, which could be relevant in defining appropriate criteria for new influenza virus vaccine candidates.


2020 ◽  
Author(s):  
Minami Nagai ◽  
Miyu Moriyama ◽  
Takeshi Ichinohe

Abstract Background: Gut microbiota and these microbial-derived products play a critical role in the induction of adaptive immune responses to influenza virus infection. However, the role of nasal bacteria in the induction of the virus-specific adaptive immunity is less clear. Here, we examine whether nasal bacteria critically regulates the generation of influenza virus specific adaptive immune response after infection or intranasal vaccination. Results: We demonstrated that disruption of nasal bacteria by topical mucosal application of antibiotic enhances the virus-specific antibody responses to influenza virus infection. Although intranasal administration of hemagglutinin (HA) vaccine alone was insufficient to induce the HA-specific antibody responses, disruption of nasal bacteria by lysozyme or addition of culturable oral bacteria from a healthy human volunteer rescued inability of the nasal bacteria to generate antibody responses to intranasally administered split-virus vaccines. Myd88-depdnent signaling in the hematopoietic compartment was required for adjuvant activity of intranasally administered oral bacteria. In addition, we found that the oral bacteria-combined intranasal vaccine induced protective antibody response to influenza virus and SARS-CoV-2 infection.Conclusion: We show for the first time that disruption of nasal bacteria enhances protective immune responses to influenza virus and SARS-CoV-2 infection. Our findings here have identified a previously unappreciated role for nasal bacteria in the induction of the virus-specific adaptive immune responses.


2020 ◽  
Vol 15 (7) ◽  
pp. 441-453
Author(s):  
Ana Vazquez-Pagan ◽  
Rebekah Honce ◽  
Stacey Schultz-Cherry

Pregnant women are among the individuals at the highest risk for severe influenza virus infection. Infection of the mother during pregnancy increases the probability of adverse fetal outcomes such as small for gestational age, preterm birth and fetal death. Animal models of syngeneic and allogeneic mating can recapitulate the increased disease severity observed in pregnant women and are used to define the mechanism(s) of that increased severity. This review focuses on influenza A virus pathogenesis, the unique immunological landscape during pregnancy, the impact of maternal influenza virus infection on the fetus and the immune responses at the maternal–fetal interface. Finally, we summarize the importance of immunization and antiviral treatment in this population and highlight issues that warrant further investigation.


Vaccines ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 40
Author(s):  
Wen-Chun Liu ◽  
Raffael Nachbagauer ◽  
Daniel Stadlbauer ◽  
Shirin Strohmeier ◽  
Alicia Solórzano ◽  
...  

Epidemic or pandemic influenza can annually cause significant morbidity and mortality in humans. We developed novel chimeric hemagglutinin (cHA)-based universal influenza virus vaccines, which contain a conserved HA stalk domain from a 2009 pandemic H1N1 (pH1N1) strain combined with globular head domains from avian influenza A viruses. Our previous reports demonstrated that prime-boost sequential immunizations induced robust antibody responses directed toward the conserved HA stalk domain in ferrets. Herein, we further followed vaccinated animals for one year to compare the efficacy and durability of these vaccines in the preclinical ferret model of influenza. Although all cHA-based immunization regimens induced durable HA stalk-specific and heterosubtypic antibody responses in ferrets, sequential immunization with live-attenuated influenza virus vaccines (LAIV-LAIV) conferred the best protection against upper respiratory tract infection by a pH1N1 influenza A virus. The findings from this study suggest that our sequential immunization strategy for a cHA-based universal influenza virus vaccine provides durable protective humoral and cellular immunity against influenza virus infection.


Vaccines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 793
Author(s):  
Ying Huang ◽  
Monique S. França ◽  
James D. Allen ◽  
Hua Shi ◽  
Ted M. Ross

Vaccination is the best way to prevent influenza virus infections, but the diversity of antigenically distinct isolates is a persistent challenge for vaccine development. In order to conquer the antigenic variability and improve influenza virus vaccine efficacy, our research group has developed computationally optimized broadly reactive antigens (COBRAs) in the form of recombinant hemagglutinins (rHAs) to elicit broader immune responses. However, previous COBRA H1N1 vaccines do not elicit immune responses that neutralize H1N1 virus strains in circulation during the recent years. In order to update our COBRA vaccine, two new candidate COBRA HA vaccines, Y2 and Y4, were generated using a new seasonal-based COBRA methodology derived from H1N1 isolates that circulated during 2013–2019. In this study, the effectiveness of COBRA Y2 and Y4 vaccines were evaluated in mice, and the elicited immune responses were compared to those generated by historical H1 COBRA HA and wild-type H1N1 HA vaccines. Mice vaccinated with the next generation COBRA HA vaccines effectively protected against morbidity and mortality after infection with H1N1 influenza viruses. The antibodies elicited by the COBRA HA vaccines were highly cross-reactive with influenza A (H1N1) pdm09-like viruses isolated from 2009 to 2021, especially with the most recent circulating viruses from 2019 to 2021. Furthermore, viral loads in lungs of mice vaccinated with Y2 and Y4 were dramatically reduced to low or undetectable levels, resulting in minimal lung injury compared to wild-type HA vaccines following H1N1 influenza virus infection.


Sign in / Sign up

Export Citation Format

Share Document