Impact of influenza virus during pregnancy: from disease severity to vaccine efficacy

2020 ◽  
Vol 15 (7) ◽  
pp. 441-453
Author(s):  
Ana Vazquez-Pagan ◽  
Rebekah Honce ◽  
Stacey Schultz-Cherry

Pregnant women are among the individuals at the highest risk for severe influenza virus infection. Infection of the mother during pregnancy increases the probability of adverse fetal outcomes such as small for gestational age, preterm birth and fetal death. Animal models of syngeneic and allogeneic mating can recapitulate the increased disease severity observed in pregnant women and are used to define the mechanism(s) of that increased severity. This review focuses on influenza A virus pathogenesis, the unique immunological landscape during pregnancy, the impact of maternal influenza virus infection on the fetus and the immune responses at the maternal–fetal interface. Finally, we summarize the importance of immunization and antiviral treatment in this population and highlight issues that warrant further investigation.

Author(s):  
Pınar YAZICI ÖZKAYA ◽  
Eşe Eda TURANLI ◽  
Hamdi METİN ◽  
Ayça Aydın UYSAL ◽  
Candan ÇİÇEK ◽  
...  

2021 ◽  
Author(s):  
Adam D. Kenney ◽  
Stephanie L. Aron ◽  
Clara Gilbert ◽  
Naresh Kumar ◽  
Peng Chen ◽  
...  

Cardiac dysfunction is a common extrapulmonary complication of severe influenza virus infection. Prevailing models propose that influenza-associated heart dysfunction is indirectly triggered by cytokine mediated cardiotoxicity downstream of the inflamed lung, rather than by direct infection of cardiac tissue. To test the etiology of cardiac dysfunction resulting from influenza virus infection, we generated a novel recombinant H1N1 influenza A virus that was attenuated in cardiomyocytes by incorporation of target sequences for miRNAs expressed specifically in that cell type (miR133b and miR206). Compared with control virus, mice infected with the miR-targeted virus had significantly reduced heart viral titers, confirming cardiac attenuation of viral replication. The miR-targeted virus, however, was fully replicative and inflammatory in lungs when compared to control virus, and induced similar systemic weight loss. The miR-targeted virus induced considerably lower levels of cardiac arrhythmia, fibrosis, and inflammation, compared with control virus, in mice lacking interferon induced transmembrane protein 3 (IFITM3), which serve as the only available model for severe influenza-associated cardiac pathology. We conclude that robust replication of virus in the heart is required for pathology even when lung inflammation is severe. Indeed, we show that human stem cell-derived cardiomyocytes are susceptible to influenza virus infection. This work establishes a fundamental new paradigm in which influenza virus damages the heart through direct infection of cardiomyocytes.


1999 ◽  
Vol 37 (12) ◽  
pp. 3971-3974 ◽  
Author(s):  
Kristi A. Covalciuc ◽  
Kenneth H. Webb ◽  
Curtis A. Carlson

Although laboratory diagnosis of respiratory viruses has been widely studied, there is a relative insufficiency of literature examining the impact of specimen type on the laboratory diagnosis of influenza A and B. In a clinical study comparing the FLU OIA test with 14-day cell culture, clinical specimens from nasopharyngeal swabs, throat swabs, nasal aspirates, and sputum were obtained from patients experiencing influenza-like symptoms. A total of 404 clinical specimens were collected from 184 patients. Patients were defined as influenza positive if the viral culture of a specimen from any sample site was positive. Patients were defined as influenza negative if the viral cultures of specimens from all sample sites were negative. By this gold standard, culture and FLU OIA test results for each sample type were compared. For each of the four specimen types, the viral culture and FLU OIA test demonstrated equal abilities to detect the presence of influenza A or B virus or viral antigen. Sputum and nasal aspirate samples were the most predictive of influenza virus infection. Throat swabs were the least predictive of influenza virus infection, with both tests failing to detect influenza virus in nearly 50% of the throat samples studied.


2019 ◽  
Vol 116 (8) ◽  
pp. 3118-3125 ◽  
Author(s):  
Miyu Moriyama ◽  
Takeshi Ichinohe

Although climate change may expand the geographical distribution of several vector-borne diseases, the effects of environmental temperature in host defense to viral infection in vivo are unknown. Here, we demonstrate that exposure of mice to the high ambient temperature of 36 °C impaired adaptive immune responses against infection with viral pathogens, influenza, Zika, and severe fever with thrombocytopenia syndrome phlebovirus. Following influenza virus infection, the high heat-exposed mice failed to stimulate inflammasome-dependent cytokine secretion and respiratory dendritic cell migration to lymph nodes. Although commensal microbiota composition remained intact, the high heat-exposed mice decreased their food intake and increased autophagy in lung tissue. Induction of autophagy in room temperature-exposed mice severely impaired virus-specific CD8 T cells and antibody responses following respiratory influenza virus infection. In addition, we found that administration of glucose or dietary short-chain fatty acids restored influenza virus-specific adaptive immune responses in high heat-exposed mice. These findings uncover an unexpected mechanism by which ambient temperature and nutritional status control virus-specific adaptive immune responses.


2010 ◽  
Vol 65 (5-6) ◽  
pp. 419-428 ◽  
Author(s):  
Julia Serkedjieva ◽  
Tsvetanka Stefanova ◽  
Ekaterina Krumova

The combined protective effect of a polyphenol-rich extract, isolated from Geranium sanguineum L. (PC), and a novel naturally glycosylated Cu/Zn-containing superoxide dismutase, produced from the fungal strain Humicula lutea 103 (HL-SOD), in the experimental influenza A virus infection (EIVI) in mice, induced with the virus A/Aichi/2/68 (H3N2), was investigated. The combined application of HL-SOD and PC in doses, which by themselves do not defend significantly mice in EIVI, resulted in a synergistically increased protection, determined on the basis of protective indices and amelioration of lung injury. Lung weights and consolidation as well as infectious lung virus titers were all decreased significantly parallel to the reduction of the mortality rates; lung indices were raised. The excessive production of reactive oxygen species (ROS) by alveolar macrophages (aMØ) as well as the elevated levels of the lung antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT), induced by EIVI, were brought to normal. For comparative reasons the combined protective effect of PC and vitamin C was investigated. The obtained results support the combined use of antioxidants for the treatment of influenza virus infection and in general indicate the beneficial protective role of combinations of viral inhibitors of natural origin with diverse modes of action.


Vaccines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 793
Author(s):  
Ying Huang ◽  
Monique S. França ◽  
James D. Allen ◽  
Hua Shi ◽  
Ted M. Ross

Vaccination is the best way to prevent influenza virus infections, but the diversity of antigenically distinct isolates is a persistent challenge for vaccine development. In order to conquer the antigenic variability and improve influenza virus vaccine efficacy, our research group has developed computationally optimized broadly reactive antigens (COBRAs) in the form of recombinant hemagglutinins (rHAs) to elicit broader immune responses. However, previous COBRA H1N1 vaccines do not elicit immune responses that neutralize H1N1 virus strains in circulation during the recent years. In order to update our COBRA vaccine, two new candidate COBRA HA vaccines, Y2 and Y4, were generated using a new seasonal-based COBRA methodology derived from H1N1 isolates that circulated during 2013–2019. In this study, the effectiveness of COBRA Y2 and Y4 vaccines were evaluated in mice, and the elicited immune responses were compared to those generated by historical H1 COBRA HA and wild-type H1N1 HA vaccines. Mice vaccinated with the next generation COBRA HA vaccines effectively protected against morbidity and mortality after infection with H1N1 influenza viruses. The antibodies elicited by the COBRA HA vaccines were highly cross-reactive with influenza A (H1N1) pdm09-like viruses isolated from 2009 to 2021, especially with the most recent circulating viruses from 2019 to 2021. Furthermore, viral loads in lungs of mice vaccinated with Y2 and Y4 were dramatically reduced to low or undetectable levels, resulting in minimal lung injury compared to wild-type HA vaccines following H1N1 influenza virus infection.


2019 ◽  
Author(s):  
Adam D. Kenney ◽  
Temet M. McMichael ◽  
Alexander Imas ◽  
Nicholas M. Chesarino ◽  
Lizhi Zhang ◽  
...  

AbstractInfluenza virus primarily targets the lungs, but dissemination and damage to heart tissue is also known to occur in severe infections. Despite this knowledge, influenza virus-induced cardiac pathogenesis and its underlying mechanisms have been difficult to study due to a lack of small animal models. In humans, polymorphisms in the gene encoding interferon-induced transmembrane protein 3 (IFITM3), an antiviral restriction factor, are associated with susceptibility to severe influenza, but whether IFITM3 deficiencies contribute to other aspects of pathogenesis, including cardiac dysfunction, is unknown. We now show that IFITM3 deficiency in a newly generated knockout (KO) mouse model exacerbates illness and mortality following influenza A virus infection. Enhanced pathogenesis correlated with increased replication of virus in the lungs, spleens, and hearts of KO mice relative to wildtype (WT) mice. IFITM3 KO mice exhibited normal cardiac function at baseline, but developed severely aberrant electrical activity upon infection, including decreased heart rate and irregular, arrhythmic RR (interbeat) intervals. In contrast, WT mice exhibited a mild decrease in heart rate without irregularity of RR intervals. Heightened cardiac virus titers and electrical dysfunction in KO animals was accompanied by increased activation of fibrotic pathways and fibrotic lesions in the heart. Our findings reveal an essential role for IFITM3 in controlling influenza virus replication and pathogenesis in heart tissue and establish IFITM3 KO mice as a powerful model to study virus-induced cardiac dysfunction.


2020 ◽  
Author(s):  
Ronghe Zhu ◽  
Cuie Chen ◽  
Qiu Wang ◽  
Xixi Zhang ◽  
Chaosheng Lu ◽  
...  

Abstract Purpose Routine blood parameters, such as the lymphocyte (LYM) count, platelet (PLT) count, lymphocyte-to-monocyte ratio (LMR), neutrophil-to-lymphocyte ratio (NLR), LYM*PLT and mean platelet volume-to-platelet ratio (MPV/PLT), are widely used to predict the prognosis of infectious diseases. We aimed to explore the value of these parameters in the early identification of influenza virus infection in children.Methods We conducted a single-center, retrospective, observational study of fever with influenza-like symptoms in pediatric outpatients from different age groups and evaluated the predictive value of various routine blood parameters measured within 48 hours of the onset of fever for influenza virus infection.Results The LYM count, PLT count, LMR and LYM*PLT were lower, and the NLR and MPV/PLT were higher in children with an influenza infection (PCR-confirmed and symptomatic). The LYM count, LMR and LYM*PLT in the influenza infection group were lower in the 1- to 6-year-old subgroup, and the LMR and LYM*PLT in the influenza infection group were lower in the >6-year-old subgroup. In the 1- to 6-year-old subgroup, the cutoff value of the LMR for predicting influenza A virus infection was 3.75, the sensitivity was 81.87%, the specificity was 84.31%, and the area under the curve (AUC) was 0.886; the cutoff value of the LMR for predicting influenza B virus infection was 3.71, the sensitivity was 73.58%, the specificity was 84.31%, and the AUC was 0.843. In the >6-year-old subgroup, the cutoff value of the LMR for predicting influenza A virus infection was 3.05, the sensitivity was 89.27%, the specificity was 89.61%, and the AUC was 0.949; the cutoff value of the LMR for predicting influenza B virus infection was 2.88, the sensitivity was 83.19%, the specificity was 92.21%, and the AUC was 0.924.Conclusions Routine blood tests are simple, inexpensive and easy to perform, and they are useful for the early identification of influenza virus infection in children. The LMR had the strongest predictive value for influenza virus infection in children older than 1 year, particularly influenza A virus infection.


Sign in / Sign up

Export Citation Format

Share Document