scholarly journals MHC class II invariant chain–adjuvanted viral vectored vaccines enhances T cell responses in humans

2020 ◽  
Vol 12 (548) ◽  
pp. eaaz7715
Author(s):  
Ilaria Esposito ◽  
Paola Cicconi ◽  
Anna Morena D’Alise ◽  
Anthony Brown ◽  
Marialuisa Esposito ◽  
...  

Strategies to enhance the induction of high magnitude T cell responses through vaccination are urgently needed. Major histocompatibility complex (MHC) class II–associated invariant chain (Ii) plays a critical role in antigen presentation, forming MHC class II peptide complexes for the generation of CD4+ T cell responses. Preclinical studies evaluating the fusion of Ii to antigens encoded in vector delivery systems have shown that this strategy may enhance T cell immune responses to the encoded antigen. We now assess this strategy in humans, using chimpanzee adenovirus 3 and modified vaccinia Ankara vectors encoding human Ii fused to the nonstructural (NS) antigens of hepatitis C virus (HCV) in a heterologous prime/boost regimen. Vaccination was well tolerated and enhanced the peak magnitude, breadth, and proliferative capacity of anti-HCV T cell responses compared to non-Ii vaccines in humans. Very high frequencies of HCV-specific T cells were elicited in humans. Polyfunctional HCV-specific CD8+ and CD4+ responses were induced with up to 30% of CD3+CD8+ cells targeting single HCV epitopes; these were mostly effector memory cells with a high proportion expressing T cell activation and cytolytic markers. No volunteers developed anti-Ii T cell or antibody responses. Using a mouse model and in vitro experiments, we show that Ii fused to NS increases HCV immune responses through enhanced ubiquitination and proteasomal degradation. This strategy could be used to develop more potent HCV vaccines that may contribute to the HCV elimination targets and paves the way for developing class II Ii vaccines against cancer and other infections.

PLoS ONE ◽  
2014 ◽  
Vol 9 (6) ◽  
pp. e100538 ◽  
Author(s):  
Alexandra J. Spencer ◽  
Matthew G. Cottingham ◽  
Jennifer A. Jenks ◽  
Rhea J. Longley ◽  
Stefania Capone ◽  
...  

2014 ◽  
Vol 22 (5) ◽  
pp. 1039-1047 ◽  
Author(s):  
Stefania Capone ◽  
Mariarosaria Naddeo ◽  
Anna Morena D'Alise ◽  
Adele Abbate ◽  
Fabiana Grazioli ◽  
...  

2021 ◽  
Vol 6 (56) ◽  
pp. eabb9435
Author(s):  
Joseph M. Leal ◽  
Jessica Y. Huang ◽  
Karan Kohli ◽  
Caleb Stoltzfus ◽  
Miranda R. Lyons-Cohen ◽  
...  

Microanatomical organization of innate immune cells within lymph nodes (LNs) is critical for the generation of adaptive responses. In particular, steady-state LN-resident dendritic cells (Res cDCs) are strategically localized to intercept lymph-draining antigens. Whether myeloid cell organization changes during inflammation and how that might affect the generation of immune responses are unknown. Here, we report that during type I, but not type II, inflammation after adjuvant immunization or viral infection, antigen-presenting Res cDCs undergo CCR7-dependent intranodal repositioning from the LN periphery into the T cell zone (TZ) to elicit T cell priming. Concurrently, inflammatory monocytes infiltrate the LNs via local blood vessels, enter the TZ, and cooperate with Res cDCs by providing polarizing cytokines to optimize T cell effector differentiation. Monocyte infiltration is nonuniform across LNs, generating distinct microenvironments with varied local innate cell composition. These spatial microdomains are associated with divergent early T cell effector programming, indicating that innate microenvironments within LNs play a critical role in regulating the quality and heterogeneity of T cell responses. Together, our findings reveal that dynamic modulation of innate cell microenvironments during type I inflammation leads to optimized generation of adaptive immune responses to vaccines and infections.


2016 ◽  
Vol 7 ◽  
Author(s):  
Laura Lambert ◽  
Ekaterina Kinnear ◽  
Jacqueline U. McDonald ◽  
Gunnveig Grodeland ◽  
Bjarne Bogen ◽  
...  

1995 ◽  
Vol 182 (3) ◽  
pp. 779-787 ◽  
Author(s):  
R König ◽  
X Shen ◽  
R N Germain

CD4 is a membrane glycoprotein on T lymphocytes that binds to the same peptide:major histocompatibility complex (MHC) class II molecule recognized by the antigen-specific receptor (TCR), thereby stabilizing interactions between the TCR and peptide;MHC class II complexes and promoting the localization of the src family tyrosine kinase p56lck into the receptor complex. Previous studies identified a solvent-exposed loop on the class II beta 2 domain necessary for binding to CD4 and for eliciting CD4 coreceptor activity. Here, we demonstrate that a second surface-exposed segment of class II is also critical for CD4 function. This site is in the alpha 2 domain, positioned in single class II heterodimers in such a way that it cannot simultaneously interact with the same CD4 molecule as the beta 2 site. The ability of mutations at either site to diminish CD4 function therefore indicates that specifically organized CD4 and/or MHC class II oligomers play a critical role in coreceptor-dependent T cell activation.


2010 ◽  
Vol 37 (2) ◽  
pp. 483-490 ◽  
Author(s):  
Gerd Meyer zu Hörste ◽  
Holger Heidenreich ◽  
Anne K. Mausberg ◽  
Helmar C. Lehmann ◽  
Anneloor L.M.A. ten Asbroek ◽  
...  

2008 ◽  
Vol 68 (3) ◽  
pp. 901-908 ◽  
Author(s):  
Hiroya Kobayashi ◽  
Toshihiro Nagato ◽  
Miki Takahara ◽  
Keisuke Sato ◽  
Shoji Kimura ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document