Daily North-Atlantic Oscillation (NAO) index: Statistics and its stratospheric polar vortex dependence

2005 ◽  
Vol 14 (6) ◽  
pp. 763-769 ◽  
Author(s):  
Simon Blessing ◽  
Klaus Fraedrich ◽  
Martina Junge ◽  
Torben Kunz ◽  
Frank Lunkeit
2021 ◽  
Author(s):  
Erik W. Kolstad ◽  
C. Ole Wulff ◽  
Daniela Domeisen ◽  
Tim Woollings

<div> <div> <div> <div> <p>The North Atlantic Oscillation (NAO) is the main driver of weather variability in parts of Eurasia, Greenland, North America, and North Africa on a range of time scales. Successful extended-range NAO predictions would equate to improved predictions of precipitation and temperature in these regions. It has become clear that the NAO is influenced by the stratosphere, but because this downward coupling is not fully reproduced by all forecast models the potential for improved NAO forecasts has not been fully realized. Here, an analysis of 21 winters of subseasonal forecast data from the European Centre for Medium-Range Weather Forecasts monthly forecasting system is presented. By dividing the forecasts into clusters according to their errors in North Atlantic Ocean sea level pressure 15-30 days into the forecasts, we identify relationships between these errors and the state of the stratospheric polar vortex when the forecasts were initialized. A key finding is that the model overestimates the persistence of both the negative NAO response following a weak polar vortex and the positive NAO response following a strong polar vortex. A case in point is the sudden stratospheric warming in early 2019, which was followed by five consecutive weeks of an overestimation of the negative NAO regime. A consequence on the ground was temperature predictions for northern Europe that were too cold. In this talk, we include a new analysis of the temperature prediction performance following the January 2021 sudden stratospheric warming. Another important finding is that the model appears to misrepresent the gradual downward impact of stratospheric vortex anomalies. This result suggests that an improved representation and prediction of stratosphere-troposphere coupling in models might yield substantial benefits for extended-range weather forecasting in the Northern Hemisphere midlatitudes.</p> </div> </div> </div> </div>


2019 ◽  
Author(s):  
Martin Wegmann ◽  
Marco Rohrer ◽  
María Santolaria-Otín ◽  
Gerrit Lohmann

Abstract. In recent years, many components of the connection between Eurasian autumn snow cover and wintertime North Atlantic Oscillation (NAO) were investigated, suggesting that November snow cover distribution has strong prediction power for the upcoming Northern Hemisphere winter climate. However, non-stationarity of this relationship could impact its use for prediction routines. Here we use snow products from long-term reanalyses to investigate interannual and interdecadal links between autumnal snow cover and atmospheric conditions in winter. We find evidence for a negative NAO tendency after November with a strong west-to-east snow cover gradient, which is valid throughout the last 150 years. This correlation is linked with a consistent impact of November snow on a slowed stratospheric polar vortex. Nevertheless, interdecadal variability for this relationship shows episodes of decreased correlation power, which co-occur with episodes of low variability in the November snow index. We find that the same is also true for sea ice as an NAO predictor. The snow dipole itself is associated with reduced Barents-Kara sea ice concentration, increased Ural blocking frequency and negative temperature anomalies in eastern Eurasia. Increased sea ice variability in recent years is linked to increased snow variability, thus increasing its power in predicting the winter NAO.


2020 ◽  
Vol 33 (21) ◽  
pp. 9145-9157 ◽  
Author(s):  
Erik W. Kolstad ◽  
C. Ole Wulff ◽  
Daniela I. V. Domeisen ◽  
Tim Woollings

AbstractThe North Atlantic Oscillation (NAO) is the main driver of weather variability in parts of Eurasia, Greenland, North America, and North Africa on a range of time scales. Successful extended-range NAO predictions would equate to improved predictions of precipitation and temperature in these regions. It has become clear that the NAO is influenced by the stratosphere, but because this downward coupling is not fully reproduced by all forecast models the potential for improved NAO forecasts has not been fully realized. Here, an analysis of 21 winters of subseasonal forecast data from the European Centre for Medium-Range Weather Forecasts monthly forecasting system is presented. By dividing the forecasts into clusters according to their errors in North Atlantic Ocean sea level pressure 15–30 days into the forecasts, we identify relationships between these errors and the state of the stratospheric polar vortex when the forecasts were initialized. A key finding is that the model overestimates the persistence of both the negative NAO response following a weak polar vortex and the positive NAO response following a strong polar vortex. A case in point is the sudden stratospheric warming in early 2019, which was followed by five consecutive weeks of an overestimation of the negative NAO regime. A consequence on the ground was temperature predictions for northern Europe that were too cold. Another important finding is that the model appears to misrepresent the gradual downward impact of stratospheric vortex anomalies. This result suggests that an improved representation and prediction of stratosphere–troposphere coupling in models might yield substantial benefits for extended-range weather forecasting in the Northern Hemisphere midlatitudes.


2010 ◽  
Vol 23 (6) ◽  
pp. 1291-1307 ◽  
Author(s):  
Tim Woollings ◽  
Abdel Hannachi ◽  
Brian Hoskins ◽  
Andrew Turner

Abstract The distribution of the daily wintertime North Atlantic Oscillation (NAO) index in the 40-yr ECMWF Re-Analysis (ERA-40) is significantly negatively skewed. Dynamical and statistical analyses both suggest that this skewness reflects the presence of two distinct regimes—referred to as “Greenland blocking” and “subpolar jet.” Changes in both the relative occurrence and in the structure of the regimes are shown to contribute to the long-term NAO trend over the ERA-40 period. This is contrasted with the simulation of the NAO in 100-yr control and doubled CO2 integrations of the third climate configuration of the Met Office Unified Model (HadCM3). The model has clear deficiencies in its simulation of the NAO in the control run, so its predictions of future behavior must be treated with caution. However, the subpolar jet regime does become more dominant under anthropogenic forcing and, while this change is small it is clearly statistically significant and does represent a real change in the nature of NAO variability in the model.


2009 ◽  
Vol 66 (2) ◽  
pp. 495-507 ◽  
Author(s):  
Lawrence Coy ◽  
Stephen Eckermann ◽  
Karl Hoppel

Abstract The major stratospheric sudden warming (SSW) of January 2006 is examined using meteorological fields from Goddard Earth Observing System version 4 (GEOS-4) analyses and forecast fields from the Navy Operational Global Atmospheric Prediction System–Advanced Level Physics, High Altitude (NOGAPS-ALPHA). The study focuses on the upper tropospheric forcing that led to the major SSW and the vertical structure of the subtropic wave breaking near 10 hPa that moved low tropical values of potential vorticity (PV) to the pole. Results show that an eastward-propagating upper tropospheric ridge over the North Atlantic with its associated cold temperature perturbations (as manifested by high 360-K potential temperature surface perturbations) and large positive local values of meridional heat flux directly forced a change in the stratospheric polar vortex, leading to the stratospheric subtropical wave breaking and warming. Results also show that the anticyclonic development, initiated by the subtropical wave breaking and associated with the poleward advection of the low PV values, occurred over a limited altitude range of approximately 6–10 km. The authors also show that the poleward advection of this localized low-PV anomaly was associated with changes in the Eliassen–Palm (EP) flux from equatorward to poleward, suggesting an important role for Rossby wave reflection in the SSW of January 2006. Similar upper tropospheric forcing and subtropical wave breaking were found to occur prior to the major SSW of January 2003.


2021 ◽  
Author(s):  
Paula Lorenzo Sánchez ◽  
Leonardo Aragão

<p>The North Atlantic Oscillation (NAO) has been widely recognized as one of the main patterns of atmospheric variability over the northern hemisphere, helping to understand variations on the North Atlantic Jet (NAJ) position and its influence on storm-tracks, atmospheric blocking and Rossby Wave breaking. Among several relevant teleconnection patterns identified through different timescales, the most prominent ones are found for northern Europe during winter months, when positive (negative) phases of NAO are related to wetter (drier) conditions. Although it is not well defined yet, an opposite connection is observed for the Mediterranean region, where negative NAO values are often associated with high precipitation. Therefore, the main goal of this study is to identify which regions and periods of the year are the most susceptible to abundant NAO-related precipitation throughout the Italian Peninsula. For doing so, the last 42 years period (1979-2020) was analysed using the Fifth Generation ECMWF Atmospheric ReAnalysis of the Global Climate (ERA5). The NAO index was calculated using the Mean Sea Level Pressure (MSLP) extracted from the nearest gridpoints to Reykjavik, Ponta Delgada, Lisbon and Gibraltar, with a time resolution of one hour and horizontal spatial resolution of 0.25ºx0.25º. Both NAO index and MSLP time series were validated for different timescales (hourly, daily, monthly and seasonal) using the Automated Surface Observing System data and the Climatic Research Unit (CRU) high-resolution dataset (based on measured data). High correlations, ranging from 0.92 to 0.98, were found for all stations, timescales and evaluated parameters. To quantify the influence of NAO over the Mediterranean region, the monthly averaged ERA5 ‘total precipitation’ data over the Italian Peninsula [35-48º N; 5-20º E] were used. As expected, the results concerning NAO x Precipitation presented the best correlations when analysed monthly, confirming some of the already known NAO signatures over the Italian Peninsula: higher correlations during winter and over the Tyrrhenian coast, and lower correlations during summer and over the Apennines, the Adriatic Sea and the Ionian Sea. On the other hand, the precipitation over the Alps and the Tunisian coast presented a remarkable signature of positive NAO values that, despite a lower statistical significance (85-90%), is in agreement with recent findings of observational studies. In addition, significant negative correlations were identified for the spring and autumn months over the Tyrrhenian area. Among those, the high correlations found during May are particularly interesting, as they follow the behaviour described in recent studies performed using the same high-resolution dataset (ERA5), which have identified an increased number of cyclones over the Mediterranean during this month. This connection suggests that NAO could also be used to explore the potential penetration of the North Atlantic depressions into the Mediterranean Basin. </p><p>Keywords: NAO; Teleconnections; ERA5; ReAnalysis; Mediterranean; Climatology.</p>


2012 ◽  
Vol 16 (5) ◽  
pp. 1389-1399 ◽  
Author(s):  
P. De Vita ◽  
V. Allocca ◽  
F. Manna ◽  
S. Fabbrocino

Abstract. Thus far, studies on climate change have focused mainly on the variability of the atmospheric and surface components of the hydrologic cycle, investigating the impact of this variability on the environment, especially with respect to the risks of desertification, droughts and floods. Conversely, the impacts of climate change on the recharge of aquifers and on the variability of groundwater flow have been less investigated, especially in Mediterranean karst areas whose water supply systems depend heavily upon groundwater exploitation. In this paper, long-term climatic variability and its influence on groundwater recharge were analysed by examining decadal patterns of precipitation, air temperature and spring discharges in the Campania region (southern Italy), coupled with the North Atlantic Oscillation (NAO). The time series of precipitation and air temperature were gathered over 90 yr, from 1921 to 2010, using 18 rain gauges and 9 air temperature stations with the most continuous functioning. The time series of the winter NAO index and of the discharges of 3 karst springs, selected from those feeding the major aqueducts systems, were collected for the same period. Regional normalised indexes of the precipitation, air temperature and karst spring discharges were calculated, and different methods were applied to analyse the related time series, including long-term trend analysis using smoothing numerical techniques, cross-correlation and Fourier analysis. The investigation of the normalised indexes highlighted the existence of long-term complex periodicities, from 2 to more than 30 yr, with differences in average values of up to approximately ±30% for precipitation and karst spring discharges, which were both strongly correlated with the winter NAO index. Although the effects of the North Atlantic Oscillation (NAO) had already been demonstrated in the long-term precipitation and streamflow patterns of different European countries and Mediterranean areas, the results of this study allow for the establishment of a link between a large-scale atmospheric cycle and the groundwater recharge of carbonate karst aquifers. Consequently, the winter NAO index could also be considered as a proxy to forecast the decadal variability of groundwater flow in Mediterranean karst areas.


2008 ◽  
Vol 8 (3) ◽  
pp. 483-499 ◽  
Author(s):  
J. L. Zêzere ◽  
R. M. Trigo ◽  
M. Fragoso ◽  
S. C. Oliveira ◽  
R. A. C. Garcia

Abstract. Landslides occurred in the Lisbon area during the last 50 years were almost always induced by rainfall and have been used to establish rainfall thresholds for regional landslide activity. In 2006, three new rainfall-triggered landslide events occurred in the study area, namely on the 20 March, the 25–27 October, and the 28 November. Landslide events occurred in March and October 2006 include shallow translational slides and few debris flows, and the corresponding absolute antecedent rainfall was found to be above the threshold for durations ranging from 4 to 10 days. These events also fit the combined threshold of daily precipitation and 5 days calibrated antecedent rainfall values. Likewise the landslide event that took place in late November 2006 includes some slope movements with deeper slip surfaces, when compared with landslides dating from March and October. Moreover, the corresponding absolute antecedent rainfall was also found to be above the 40-day period rainfall threshold. Here we characterize in detail the short and long-term atmospheric circulation conditions that were responsible for the intense rainfall episodes that have triggered the corresponding landslide events. It is shown that the three rainfall episodes correspond to considerably different synoptic atmospheric patterns, with the March episode being associated to an intense cut-off low system while the October and November episodes appear to be related to more typical Atlantic low pressure systems (and associated fronts) travelling eastwards. Finally, we analyse the role played by the North Atlantic Oscillation (NAO) during those months marked by landslide activity. It is shown that the NAO index was consistently negative (usually associated with above average precipitation) for the months prior to the landslide events, i.e. between October 2005 and March 2006, and again between August and October 2006.


2011 ◽  
Vol 68 (3) ◽  
pp. 577-601 ◽  
Author(s):  
Dehai Luo ◽  
Yina Diao ◽  
Steven B. Feldstein

Abstract The winter-mean North Atlantic Oscillation (NAO) index has been mostly positive since the 1980s, with a linear upward trend during the period from 1978 to 1990 (P1) and a linear downward trend during the period from 1991 to 2009 (P2). Further calculations show that the Atlantic storm-track eddy activity is more intense during P2 than during P1, which is statistically significant at the 90% confidence level for a t test. This study proposes a hypothesis that the change in the trend of the positive NAO index from P1 to P2 may be associated with the marked intensification of the Atlantic storm track during P2. A generalized nonlinear NAO model is used to explain the observed trend of the positive NAO index within P2. It is found that even when the Atlantic storm-track eddies are less intense, a positive-phase NAO event can form under the eddy forcing if the planetary-scale wave has an initial value with a low-over-high dipole structure during P1 and P2. A blocking flow can occur in the downstream side (over Europe) of the Atlantic basin as a result of the energy dispersion of Rossby waves during the decay of the positive-phase NAO event. This blocking flow does not strictly correspond to a negative-phase NAO event because the blocking stays mainly over the European continent. However, when the Atlantic storm-track eddies are rather strong, the blocking flow occurring over the European continent is enhanced and can retrograde into the Atlantic region and finally become a long-lived negative-phase NAO event. In this case, the NAO event can transit from the positive phase to the negative phase. Thus, the winter-mean NAO index during P2 will inevitably decline because of the increase in days of negative-phase NAO events in winter because the Atlantic storm track exhibits a marked intensification in the time interval. The transition of the NAO event from the positive phase to the negative phase can also be observed only when the downstream development of the Atlantic storm-track eddy activity is rather prominent. Thus, it appears that there is a physical link between intraseasonal and interannual time scales of the NAO when the Atlantic storm track exhibits an interannual variability.


2020 ◽  
Author(s):  
Johanna Baehr ◽  
Simon Wett ◽  
Mikhail Dobrynin ◽  
Daniela Domeisen

<p>The downward influence of the stratosphere on the troposphere can be significant during boreal winter when the polar vortex is most variable, when major circulation changes in the stratosphere can impact the tropospheric flow. These strong and weak vortex events, the latter also referred to as Sudden Stratospheric Warmings (SSWs), are capable of influencing the tropospheric circulation down to the sea level on timescales from weeks to months. Thus, the occurrence of stratospheric polar vortex events influences the seasonal predictability of sea level pressure (SLP), which is, over the Atlantic sector, strongly linked to the North Atlantic oscillation (NAO).<br>We analyze the influence of the polar vortex on the seasonal predictability of SLP in a seasonal prediction system based on the mixed resolution configuration of the coupled Max-Planck-Institute Earth System Model (MPI-ESM), where we investigate a 30 member ensemble hindcast simulation covering 1982 -2016. Since the state of the polar vortex is predictable only a few weeks or even days ahead, the seasonal prediction system cannot exactly predict the day of occurrence of stratospheric events. However, making use of the large number of stratospheric polar vortex events in the ensemble hindcast simulation, we present a statistical analysis of the influence of a correct or incorrect prediction of the stratospheric vortex state on the seasonal predictability of SLP over the North Atlantic and Europe.</p>


Sign in / Sign up

Export Citation Format

Share Document