Combining UHF radar wind profiler and microwave radiometer for the estimation of atmospheric humidity profiles

2006 ◽  
Vol 15 (1) ◽  
pp. 87-97 ◽  
Author(s):  
Vladislav Klaus ◽  
Laura Bianco ◽  
Catherine Gaffard ◽  
Monica Matabuena ◽  
Tim J. Hewison
2005 ◽  
Vol 22 (7) ◽  
pp. 949-965 ◽  
Author(s):  
Laura Bianco ◽  
Domenico Cimini ◽  
Frank S. Marzano ◽  
Randolph Ware

Abstract A self-consistent remote sensing physical method to retrieve atmospheric humidity high-resolution profiles by synergetic use of a microwave radiometer profiler (MWRP) and wind profiler radar (WPR) is illustrated. The proposed technique is based on the processing of WPR data for estimating the potential refractivity gradient profiles and their optimal combination with MWRP estimates of potential temperature profiles in order to fully retrieve humidity gradient profiles. The combined algorithm makes use of recent developments in WPR signal processing, computing the zeroth-, first-, and second-order moments of WPR Doppler spectra via a fuzzy logic method, which provides quality control of radar data in the spectral domain. On the other hand, the application of neural network to brightness temperatures, measured by a multichannel MWRP, can provide continuous estimates of tropospheric temperature and humidity profiles. Performance of the combined algorithm in retrieving humidity profiles is compared with simultaneous in situ radiosonde observations (raob’s). The empirical sets of WPR and MWRP data were collected at the Atmospheric Radiation Measurement (ARM) Program’s Southern Great Plains (SGP) site. Combined microwave radiometer and wind profiler measurements show encouraging results and significantly improve the spatial vertical resolution of atmospheric humidity profiles. Finally, some of the limitations found in the use of this technique and possible future improvements are also discussed.


2014 ◽  
Vol 7 (5) ◽  
pp. 1201-1211 ◽  
Author(s):  
F. Navas-Guzmán ◽  
J. Fernández-Gálvez ◽  
M. J. Granados-Muñoz ◽  
J. L. Guerrero-Rascado ◽  
J. A. Bravo-Aranda ◽  
...  

Abstract. In this paper, we outline an iterative method to calibrate the water vapour mixing ratio profiles retrieved from Raman lidar measurements. Simultaneous and co-located radiosonde data are used for this purpose and the calibration results obtained during a radiosonde campaign in summer and autumn 2011 are presented. The water vapour profiles measured during night-time by the Raman lidar and radiosondes are compared and the differences between the methodologies are discussed. Then, a new approach to obtain relative humidity profiles by combination of simultaneous profiles of temperature (retrieved from a microwave radiometer) and water vapour mixing ratio (from a Raman lidar) is addressed. In the last part of this work, a statistical analysis of water vapour mixing ratio and relative humidity profiles obtained during 1 year of simultaneous measurements is presented.


2013 ◽  
Vol 6 (6) ◽  
pp. 10481-10510
Author(s):  
F. Navas-Guzmán ◽  
J. Fernández-Gálvez ◽  
M. J. Granados-Muñoz ◽  
J. L. Guerrero-Rascado ◽  
J. A. Bravo-Aranda ◽  
...  

Abstract. In this paper, we outline an iterative method to calibrate the water vapour mixing ratio profiles retrieved from Raman lidar measurements. Simultaneous and co-located radiosonde data are used for this purpose and the calibration results obtained during a radiosonde campaign performed in Summer and Autumn 2011 are presented. The water vapour profiles measured during nighttime by the Raman lidar and radiosondes are compared and the differences between the methodologies are discussed. Moreover, a new approach to obtain relative humidity profiles by combination of simultaneous profiles of temperature (retrieved from a microwave radiometer) and water vapour mixing ratio (from a Raman lidar) is addressed. In the last part of this work, a statistical analysis of water vapour mixing ratio and relative humidity profiles obtained during one year of simultaneous measurements is presented.


Sign in / Sign up

Export Citation Format

Share Document